Activity 1

1. Given the Cartesian equation y = 5(x - 2), find two different parameterizations of the curve.

Possible Solutions: Using the natural parameterizations, we let x(t) = t, then y(t) = 5(t-2) and take the parameter interval $-\infty < t < \infty$.

Alternatively, we can use x(t) = t + 2, then you get y(t) = 5(t + 2 - 2) = 5t and take the parameter interval $-\infty < t < \infty$.

- 2. A hiker in Yellowstone National Park is traveling along a path defined by the parametric equations x(t) = 80 4t, y(t) = 3t. A bear leaves another area of the park and walks along the path described by x(t) = 2t, y(t) = 20 + t.
 - (a) Consider the Cartesian equations for the hiker and bear. Do these suggest that the paths of the hiker and bear intersect?
 - (b) If the paths meet, do the hiker and bear reach the intersection at the same time t?

Possible Solutions: To determine whether the paths intersect, find the Cartesian representations of the given curves:

Hiker: Solve for t in terms of x, $x = 80 - 4t \Rightarrow t = 20 - \frac{x}{4}$, which we then plug in for t in the equation for y to get $y = 3t = 3(20 - \frac{x}{4}) = \frac{-3}{4}x + 60$.

Bear: Solve for t in terms of x, $x=2t \Rightarrow t=\frac{x}{2}$, and then plug this into the equation for y to get $y=20+t=\frac{1}{2}x+20$.

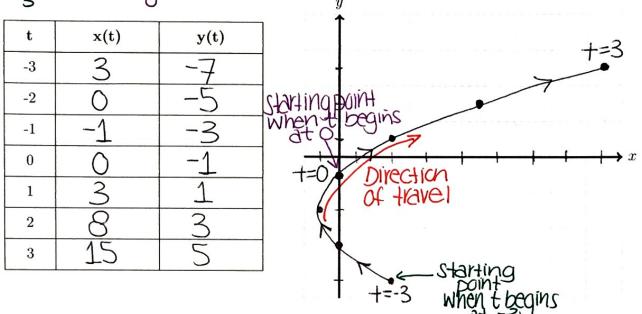
So we have two lines in the plane, one with slope $\frac{-1}{4}$ and the other with slope $\frac{1}{2}$, so they are not parallel and so they must intersect somewhere.

Now find out whether the bear and hiker collide, we just check if the x and y coordinates are equal at the same t, so we set the x(t)'s equal and solve for t and do the same for the y(t)'s and check if the t's are the same:

 $80 - 4t = 2t \Rightarrow t = 13.\overline{3}, 20 + t = 3t \Rightarrow t = 10$. Since these two t values are not the same, we conclude that the bear and the hiker do not meet!

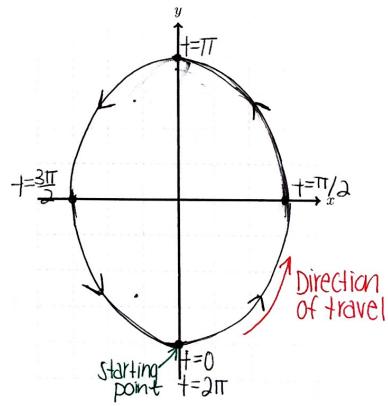
Handout - Graphing Parametric Equations

Consider how to sketch the graph of the parametric equations: $x(t) = t^2 + 2t$, y(t) = 2t - 1 for $0 \le t \le 3$. Or for $0 \le t \le 3$.



Now consider how to sketch the graph of the parametric equations: $x(t) = 3\sin(t)$, $y(t) = -4\cos(t)$ for $0 \le t \le 4\pi$.

t	x(t)	y(t)
0	0	-4
$\frac{\pi}{4}$	35≈2.12	-212×-2.828
$\frac{\pi}{2}$	3	0
$\frac{3\pi}{4}$	312	215
π	Õ	4
$\frac{5\pi}{4}$	-312	2/2
$\frac{3\pi}{2}$	-3	0
$\frac{7\pi}{4}$	-3/5	-215%-2.628
2π	Õ	J/2× J83
		-4

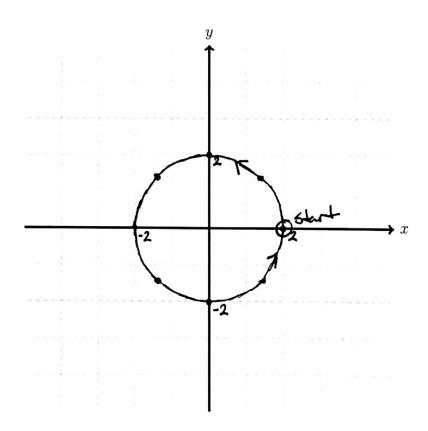


Activity 2

1. Sketch the graph of the parametric equations: $x(t) = 2\cos(t)$, $y(t) = 2\sin(t)$ for $0 \le t \le 2\pi$. Indicate the start point and direction of travel.

t	x(t)	y(t)
0	2	Ó
$\frac{\pi}{4}$	52	52
$\frac{\pi}{2}$	O	2
3 <u>m</u>	-1 <u>2</u>	52
π	- 2	0
T 5至	-12	-52

12≈1.414



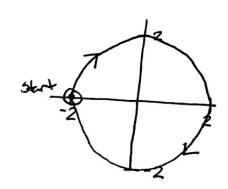
2. Describe in words what happens to the previous graph if we change the values of t to $-\pi \le t \le \pi$. What about $0 \le t \le 4\pi$?

First, if we considered -TI £ t & TT our start point would change from being (2,0) to (-2,0) and We would still travel counterclockwise through the circle.

second, if we considered 05±547 our start point would stay at (2,0) and we would still travel counterclockwise, but we would trace the circle twice.

3. Consider the parametric equations $x(t) = -2\cos(t)$, $y(t) = 2\sin(t)$ for $0 \le t \le 2\pi$. How is this curve different from the graph you sketched in Exercise 1?

+	X	1x
0	-2	6
F2	0	2
T	2	0
35	U	-2
2π	-2	0



First we notice that x43 is negative compared to the x43 in Ex. 1.

From plugging in t=0 we see that we start at (-2,0) instead of (2,0).

From graphing the 1st couple of t values we notice that this graph travels clockwise netecal of counterclockwise.