
MATH 142: LECTURE NOTES

BLAKE FARMAN

1. Numerical Integration

The idea of this section is to be able to estimate integrals of functions for which there are
no known elementary antiderivatives with methods which are generally ‘better’ than simply
using rectangles. Both of the methods in this section have the advantage of being extremely
straightforward to implement in your favorite mathematics software (Sage, Mathematica,
Matlab, Maple, etc.).

For ease of presentation, we make some simplifications. We will assume throughout that
f is a non-negative, continuous function on [a, b], however it need only be continuous in [a, b]
for this to work.

1.1. Trapezoidal Approximations. Let ∆x = b−a
n

and take the partition

x0 = a, x1 = a + ∆x, x2 = a + 2∆x, . . . , xn−1 = a + (n− 1)∆x, xn = b.

We name the function values

y0 = f(a), y1 = f(x1), . . . , yn = f(xn)

and, on each subinterval [xi, xi+1], we construct a trapezoid connecting the points [xi, yi] and
[xi+1, yi+1] to get something that looks like the following

To estimate the integral ∫ b

a

f(x) dx

we need only sum the areas of the trapezoids. The ith trapezoid looks like
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so its area can be computed as the sum of the area of the triangle on top and the area of
the rectangle on the bottom

1

2
(yi+1 − yi)∆x + yi∆x =

1

2
(yi+1 − yi + 2yi)∆x =

yi + yi+1

2
∆x.

To get an approximation to the area underneath the curve f we now add up the areas of the
n trapezoids

y0 + y1

2
∆x +

y1 + y2

2
∆x + . . . +

yn−2 + yn−1

2
∆x +

yn−1 + yn
2

∆x

= (y0 + y1 + y1 + y2 + . . . yn−2 + yn−1 + yn−1 + yn)
∆x

2
.

We observe that y0 and yn appear in the sum only once, but each other yi appears twice:
once on the subinterval [xi, xi+1] and once on the subinterval [xi+1, xi+2]. Therefore we have

Theorem 1.1 (The Trapezoidal Rule). To approximate the integral∫ b

a

f(x) dx

by n trapezoids of base width

∆x =
b− a

2
use

T = (y0 + 2y1 + 2y2 + . . . + 2yn−2 + 2yn−1 + yn)
∆x

2
where

x0 = a, x1 = a + ∆x, x2 = a + 2∆x, . . . , xn−1 = a + (n− 1)∆x, xn = b

and yi = f(xi) for 0 ≤ i ≤ n.

Example 1.2. Use the Trapezoidal Rule to approximate∫ 2

1

x2 dx

using n = 4 trapezoids.
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Solution. First we compute

∆x =
2− 1

4
=

1

4

so our partition is

x0 = 1, x1 = 5/4, x2 = 3/2, x3 = 7/4, x4 = 2

and

y0 = 1, y1 =
25

16
, y2 =

9

4
, y3 =

49

16
, y4 = 4.

We can sketch the trapezoids we’re using for our approximation

The estimate is then

T =

(
1 + 2 · 25

16
+ 2 · 9

4
+ 2 · 49

16
+ 4

)
1/4

2

=

(
8

8
+

25

8
+

36

8
+

49

8
+

32

8

)
1

8

=
150

64

=
75

32
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Since we know how to compute the actual area, we see that the estimate has an error of∫ 2

1

x2 dx− 75

32
=

23 − 13

3
− 75

32

=
7

3
− 75

32

=
7(32)− 3(75)

96

=
210 + 14− 210− 15

96

= − 1

96
= −0.010416.

Thus the trapezoidal rule gives a slight over-estimate here. �

1.2. Simpson’s Rule: Approximations Using Parabolas. Once again, we let

∆x =
b− a

2
,

take an evenly spaced partition

x0 = a, x1 = a + ∆x, x2 = a + 2∆x, . . . , xn−1 = a + (n− 1)∆x, xn = b,

and denote yi = f(xi) for 0 ≤ i ≤ n. However, this time we require that n is an even
integer.

We make this stipulation because we will fit a parabola to three points

(xi−1, yi−1), (xi, yi), (xi+1, yi+1)

and use the area under the parabola on the interval [xi−1, xi+1] as an estimate for∫ xi+1

xi−1

f(x) dx =

∫ xi

xi−1

f(x) dx +

∫ xi+1

xi

f(x) dx.

Since the partition subdivides [a, b] into n subintervals and each parabola estimates the area
on two of these subintervals, we must use n/2 parabolas, and hence n must be even for the
method to work.

To get a feel for what is happening here, depicted below is a curve with a parabola fitted
to the three points

(x2, y2), (x3, y3), (x4, y4).

The shaded region represents the area under the parabola, p(x), which approximates the
area under the curve f on the interval [x2, x4].
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For each of the m = n/2 subintervals,

[x1, x3], [x2, x4], . . . , [xn−4, xn−2], [xn−2, xn]

we must compute the area under the parabolas and then sum them up. To make our task a
little simpler, we make the following observation.

We note that if we shift our graph above to the left by x3 units, this rigid transformation
does not change the area of the shaded region, as seen in the graph of f(x+x3) and p(x+x3)
below

So we see that instead of trying to fit a parabola to the points

(x2, y2), (x3, y3), (x4, y4)

we can fit a parabola, q(x), to the points

(−∆x, yi−1), (0, yi), (∆x, yi+1)

so that the shifted parabola

p(x) = q(x− x3)

satisfies

p(x2) = q(x2 − x3) = q(x2 − (x2 + ∆x)) = q(−∆x) = y2

p(x3) = q(x3 − x3) = q(0) = y3

p(x4) = q(x4 − x3) = q(x3 + ∆x− x3) = q(∆x) = y4

and ∫ x4

x2

p(x) dx =

∫ ∆x

−∆x

q(x) dx.

This small observation will simplify our task greatly.
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Next, we set about computing all the areas we need. The first thing we need is a parabola
for each of i = 1, 3, 5, . . . , n− 1. For such an i we take the three points (−∆x, yi−1), (0, yi),
and (∆x, yi+1). The parabola we want will have the form

q(x) = Ax2 + Bx + C

and it must satisfy the three equations

yi = q(0) = A(0)2 + B(0) + C = C

yi−1 = q(−∆x) = A(∆x)2 −B(∆x) + C

yi+1 = q(−∆x) = A(∆x)2 −B(∆x) + C

The first equation gives us C = yi. If we add together the other two equations we see that

yi−1 + yi+1 = 2A(∆x)2 + 2yi

so we have

2A(∆x)2 = yi−1 + yi+1 − 2yi.

This is enough information to solve for A and B in terms of yi−1, yi, yi+1, and ∆x, but we
can be a little more clever here.

Since x2 and the constant function are even functions, and x is an odd function, the area
under q(x) on [−∆x,∆x] is given by∫ ∆x

−∆x

q(x) dx =

∫ ∆x

−∆x

(Ax2 + Bx + C) dx

= A

∫ ∆x

−∆x

x2 dx + B

∫ ∆x

−∆x

x dx + C

∫ ∆x

−∆x

dx

= 2A

∫ ∆x

0

x2 dx + 0 + 2C

∫ ∆x

0

dx

=
2

3
A(∆x)3 + 2C∆x

=
∆x

3

(
2A(∆x)2 + 6C

)
=

∆x

3
(yi−1 + yi+1 − 2yi + 6yi)

=
∆x

3
(yi−1 + 4yi + yi+1) .

Now, as we observed above, the parabola

p(x) = q(x− xi)

satisfies

p(xi−1) = q(xi−1 − (xi−1 + ∆x)) = q(−∆x) = yi−1

p(xi) = q(xi − xi) = q(0) = yi

p(xi+1) = q(xi + ∆x− xi) = q(∆x) = yi+1
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and ∫ xi+1

xi−1

p(x) dx =

∫ ∆x

−∆x

q(x) dx =
∆x

3
(yi−1 + 4yi + yi+1)

Hence we have the approximation∫ b

a

f(x) dx ≈ ∆x

3
(y0 + 4y1 + y2) +

∆x

3
(y2 + 4y3 + y4) + . . .

+
∆x

3
(yn−4 + 4yn−3 + yn−2) +

∆x

3
(yn−2 + 4yn−1 + yn)

We observe that the terms y0 and yn will only appear once, and the terms y1, y3, . . . , yn−3, yn−1

with odd subscript all appear with coefficient 4 exactly once. All other terms with even
subscript, y2j for j = 1, 2, . . . , n/2, all appear twice: once in the approximation over the
interval [x2j−2, x2j] and once in the approximation over the interval [x2j, x2j+2]. Therefore
we have

Theorem 1.3 (Simpson’s Rule). The integral∫ b

a

f(x) dx

can be approximated using n/2 parabolas by

S =
∆x

3
(y0 + 4y1 + 2y2 + 4y3 + . . . + 2yn−2 + 4yn−1 + yn) ,

where

∆x =
b− a

n
,

the interval [a, b] is partitioned by

x0 = a, x1 = a + ∆x, x2 = a + 2∆x, . . . , xn−1 = a + (n− 1)∆x, xn = b,

and yi = f(xi).

Example 1.4. Use Simpson’s rule to estimate∫ 2

0

5x4 dx

using two parabolas.

Solution. First we compute

∆x =
2− 0

4
=

1

2
and so we have a partition

x0 = 0, x1 =
1

2
, x2 = 1, x3 =

3

2
, x4 = 2.

The y-coordinates of the points we need are

y0 = 0, y1 =
5

16
, y2 = 5, y3 =

405

16
, y4 = 80.
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Thus the estimate is given by

S =
1

6
(0 +

5

4
+ 10 +

405

4
+ 80)

=
1

24
(5 + 40 + 405 + 320)

=
770

24

=
2 · 5 · 7 · 11

23 · 3
=

385

12

= 32 +
1

12
.

�

1.3. Error Analysis. Now that we have these two methods for approximation, the natural
question to ask is, how good are these approximations?

Theorem 1.5. If f ′′ is continuous and M is any upper bound for the values of |f ′′| on [a, b],
then the error, ET , in the trapezoidal approximation of∫ b

a

f(x) dx

for n trapezoids satisfies

|ET | ≤
M(b− a)3

12n2
.

If the fourth derivative, f (4) is continuous and M is any upper bound for the values of∣∣∣f (4)
∣∣∣ on [a, b], then the error, ES, in the Simpson’s rule approximation of∫ b

a

f(x) dx

for n/2 parabolas satisfies

|ES| ≤
M(b− a)5

180n4
.

Proof. Omitted. �

Remark 1.6. Since both of these bounds rely on derivatives, it follows that any polynomial
of degree at most 1, the Trapezoidal Approximation has no error, and for any polynomial of
degree at most 3, the Simpson’s Rule Approximation has no error, regardless of the choice
of n.

For example, if we consider a polynomial

`(x) = Mx + B

then `′′(x) = 0, so for any interval [a, b] we have

|ET | ≤
0(b− a)3

12n2
= 0
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implies that ET = 0 and thus ∫ b

a

`(x) dx = T.

Similarly, for any polynomial

c(x) = Ax3 + Bx2 + Cx + D

we have c(4)(x) = 0, so

|ES| ≤
0(b− a)5

180n4
= 0

implies that ES = 0 and thus ∫ b

a

c(x) dx = S.

Example 1.7. As an interesting special case of the last statement in the remark, consider
the following cubic polynomial. Let a < c < b be real numbers and define

p(x) = (x− a)(x− b)(x− c) = x3 − (a + b + c)x2 + (ab + ac + bc)x− abc.

Take n = 2, so then we have∫ b

a

p(x) dx = (p(a) + 4p

(
a +

b− a

2
+ p(b)

)
b− a

6

= 4p

(
a + b

2

)
b− a

6

In particular, if c = a+b
2

, then we see that

∫ b

a

p(x) dx = 0.

Concretely, we could take the polynomial

p(x) = (x + 2)(x− 2)(x− 6) = x3 − 6x2 − 4x + 24

and ∫ 6

−2

p(x) dx = 0

which tells us that there is a certain symmetry about a degree three polynomial with evenly
spaced roots! That is to say, in the graph
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the two shaded regions are the same size.

Example 1.8. Find an upper bound for the error in estimating∫ 2

0

5x4 dx

using Simpson’s Rule with n = 4.

Solution. Since we’re using f(x) = 5x4, we note that

f (4)(x) = 210 = M

serves as an upper bound on [0, 2], so

|ES| ≤
120(2)5

180(4)4
=

120

180 · 23
=

2

3 · 8
=

1

12

�

Example 1.9. Determine the number of subintervals, n, needed to estimate∫ 2

0

5x4 dx

to an error of magnitude less than 10−4 using Simpson’s Rule.

Solution. We want to have

|ES| ≤
M(b− a)5

180n4
=

120(25)

180n4
=

26

3n4
< 10−4.

So, all we need to do is require that

26 · 104

3
< n4

or, equivalently, that
4
√

26 4
√

104

4
√

3
=

23/2 · 10√
43

< n.
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Since
23/2 · 10√

43
≈ 21.5

it follows that we can ensure the error is less than 10−4 by taking 22 ≤ n. �


