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function F such that
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6.1/6.2: © By the Fundamental Theorem of Calculus, given an

ANTIDERIVA-

TIVES antiderivative, F, of f,

b b
/f(x)dx:/ F'(x)dx = F(b) — F(a).

@ If f admits an antiderivative, F, then for any ¢ € R,
F(x) + cis also an antiderivative because

d d d
g (FOO+0) = L F() + (€)= f(x) +0 = f(x).
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For any monomial f(x) = ax”, 0 < n, an antiderivative of f is

F(x) = x"14c ceR

n+1

since 2
F/ = 1 n = n.
(x) o (n+1)x" = ax
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Since we know the antiderivative for a monomial, given a
polynomial

n
f(x)=> anix""
i~0

we have the antiderivative
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F(x) = 3%X3 + 2%X2 +5x+c¢
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i 1
F(x) =355 +22x% + 5x+ 0= x° + x* + 5x + 0.

We can always check our solution:

d d d
/ _ 23 M2 ~
F(x)_dxx erxx +5dxx
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antiderivative of f is

i 1
F(x) =355 +22x% + 5x+ 0= x° + x* + 5x + 0.

We can always check our solution:

F'(x) = c;jxx3+;xx2+5ci(x:3x2+2x+5
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Let f(x) = 3x% 4+ 2x + 5. Then for any ¢ € R, an
antiderivative of f is

i 1
F(x) =355 +22x% + 5x+ 0= x° + x* + 5x + 0.

We can always check our solution:

F'(x) = ;Xxs‘ + ;sz + 5dci(x =3x% +2x + 5 = f(x).
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Let P(x) = Poe®*. Since & e = kek*, we observe that
iPO kx_POd kx_PO Kx __ kx _
dx?e _7d76 _7-k~e = Pye™ = P(x).

This implies

P
?OekX-FC,CER

is an antiderivative of P(x).
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P(x) = Poa* = Pye"(@*
so that

L I
dxIn(a)~  In(a)dx

Therefore
P

In(a)
is an antiderivative of P(x).

a+c ceR
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If fis a function with an antiderivative F, then the indefinite
integral is the family of functions

/f(x)dx =F(x)+c

where c is a constant.

Note that this immediately implies

dci(/f(x)dx = f(x).
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indefinite integrals:
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PROPERTIES OF THE INDEFINITE INTEGRAL

MATH 122

FARMAN

Assume that [ f(x)dx and [ g(x)dx exist. Then

© The indefinite integral of a sum is the sum of the
indefinite integrals:

/f(x)ig(x)dx—/f(x)dxi/g(x)dx.

© Constants pass through the indefnite integral:

/af(x)dx = a/ f(x)dx, ae R.
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/12x3dx = 12/x dx

= 124x +c

= 3x*+c.
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Integrate
12e%%.

/12e°'2’dt - 12/eédt

= 12 <Seé) +cC
= 60e% +c.
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@ When n = 1, the previous method fails because
1/(—n+ 1) is undefined.

@ We observe that

d 1
d7 In(X) - ;7

so we would expect

/dx =In(x) +c.

X

@ This isn’'t quite true.
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Matn 122 Let F(x) be an antiderivative of 1/x. Since this function is
FARMAN continuous away from x = 0, we could ask:

What is the area between 1/x and the x-axis
fromx =-2tox=—-17?

By the Fundamental Theorem of Calculus, this is

/1 X FC1y = F(-2).

o X
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