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5.2: Tk e In the last section, we saw that for a continuous
INTEGRAL function f on an interval [a, b], the error for Left-Hand
Sums and Right-Hand Sums goes to zero as the

number of points in the partition becomes large.

e As the error term goes to zero, the Left-Hand Sum
increases towards a fixed value and the Right-Hand
Sum decreases towards that same value.

e The common value that these sums approach is called
a limit, and we call this particular limit the Definite
Integral.
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DREINE definite integral of f from a to b is
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b
/‘KDdt:JM1 f(t)At = lim > f(t)At,
a — 00 e n—oo P

where the set of t-values
a=lhh<th<---<thi1<th=b
is a partition of [a, b] into n intervals of length

PVl
n
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e The curve y = v/1 — x2 is the top half of this circle, and
the integral is the area bounded by this semicircle:
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And we note that the red and blue areas are, by symmetry,
the same.
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If F'(t) is a continuous function on [a, b], then

/b F'(t)dt = F(b) - F(a).
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Let F(t) = 3x°. Differentiating F gives

F'(t) = 1 (3x2> = x?

3
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Ty DAMEN- and hence by the Fundamental Theorem of Calculus
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3 3
/x2dx—/ F'(x)dx = F(3) — F(0) =32 - 02 =09.
0 0

Essentially, this says that the area between the derivative of
F and the x-axis from a and b is just the total change in F
on the interval [a, b].
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