

FARMAI

2.1: INSTAN
TANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

MATH 122

Blake Farman 1

¹University of South Carolina, Columbia, SC USA

Calculus for Business Administration and Social Sciences

OUTLINE

MATH 122

FARMAI

2.1: Instan taneous Rate of Change

2.2: THE DERIVATIVE FUNCTION

1 2.1: Instantaneous Rate of Change

OUTLINE

MATH 122

FARMA

2.1: INSTAN TANEOUS RATE OF CHANGE

2.2: THE DERIVATIVE FUNCTION

1 2.1: Instantaneous Rate of Change

2 2.2: THE DERIVATIVE FUNCTION

MATH 122

FARMAI

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIV FUNCTION

DEFINITION 1

The *instantaneous rate of change* of *f* at *a* is defined to be the limit of the average rates of change of *f* over successively smaller intervals around *a*.

This is also known as the *derivative* of f at a.

EXAMPLE

MATH 122

FARMAI

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE
DERIVATIVE
FUNCTION

The quadratic

$$s(t) = -4.9t^2 + 9.8t$$

models the position of an object thrown vertically into the air with an initial velocity of 9.8 m/s.

EXAMPLE

MATH 122

FARMAN
2.1: INSTAN-

RATE OF CHANGE 2.2: THE DERIVATIVE

The quadratic

$$s(t) = -4.9t^2 + 9.8t$$

models the position of an object thrown vertically into the air with an initial velocity of 9.8 m/s. What is the instantaneous rate of change at the vertex, where t = 1?

MATH 122

FARMA!

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

t
$$\frac{f(t)-f(1)}{t-1}$$

MATH 122

FARMAN

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

t
$$\frac{t(t)-t(1)}{t-1}$$
 0 4.9

MATH 122

FARMAN

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

t
$$\frac{f(t)-f(1)}{t-1}$$
 0 4.9 ≈ 0.49

MATH 122

FARMAN

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: The Derivative Function

١9
)4
•

MATH 122

FARMAN

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: The Derivativi Function

t	$\frac{t(t)-t(1)}{t-1}$
0	4.9
0.9	≈ 0.49
0.99	pprox 0.049
0.999	≈ 0.0049

MATH 122

FARMAN

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: The Derivative Function

t	$\frac{f(t)-f(1)}{t-1}$
0	4.9
0.9	pprox 0.49
0.99	≈ 0.049
0.999	≈ 0.0049
0.9999	≈ 0.00049

MATH 122

FARMAN

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: The Derivative Function

t	$\frac{f(t)-f(1)}{t-1}$
0	4.9
0.9	≈ 0.49
0.99	≈ 0.049
0.999	≈ 0.0049
0.9999	≈ 0.00049
0.99999	≈ 0.000049

MATH 122

FARMAN

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE Derivative Function

t	$\frac{f(t)-f(1)}{t-1}$
0	4.9
0.9	≈ 0.49
0.99	≈ 0.049
0.999	≈ 0.0049
0.9999	≈ 0.00049
0.99999	≈ 0.000049
0.999999	≈ 0.0000049

MATH 122

FARMAN
2.1: INSTAN-

RATE OF CHANGE

2.2: The Derivative Function Here are some values:

t
$$\frac{f(t)-f(1)}{t-1}$$

0 4.9
0.9 \approx 0.49
0.99 \approx 0.049
0.999 \approx 0.0049
0.9999 \approx 0.00049
0.99999 \approx 0.000049
0.999999 \approx 0.0000049

So, we would guess that the instantaneous rate of change is 0 at t = 1.

ANIMATION

MATH 122

FARMAN

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

MATH 12

FARMA

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: The Derivative Function

DEFINITION 2

• If a function, f, has a derivative at every point in its domain, then we say that f is differentiable.

MATH 12

FARMA

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: The Derivative Function

DEFINITION 2

- If a function, f, has a derivative at every point in its domain, then we say that f is differentiable.
- In this case, we can define a function f'(x) that outputs the instantaneous rate of change of f at x.

MATH 12

FARMAN

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE Derivative Function

DEFINITION 2

- If a function, f, has a derivative at every point in its domain, then we say that f is differentiable.
- In this case, we can define a function f'(x) that outputs the instantaneous rate of change of f at x.
- We call f'(x) the *derivative function*.

THE TANGENT LINE

MATH 12

FARMA

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE Derivative Function

DEFINITION 3

• We can regard $f'(x_0)$ as a velocity by viewing it as the slope of a line passing through $(x_0, f(x_0))$.

THE TANGENT LINE

MATH 12

FARMA

2.1: INSTAN TANEOUS RATE OF CHANGE

2.2: THE DERIVATIVE FUNCTION

DEFINITION 3

- We can regard $f'(x_0)$ as a velocity by viewing it as the slope of a line passing through $(x_0, f(x_0))$.
- We call the line

$$y - f(x_0) = f'(x_0)(x - x_0)$$

the line tangent to f at $(x_0, f(x_0))$.

LINEARIZATION

MATH 122

FARMAN

2.1: INSTAN TANEOUS RATE OF CHANGE

2.2: THE DERIVATIVE FUNCTION

• Since we defined $f'(x_0)$ by a limit,

$$f'(x_0) \approx \frac{f(x) - f(x_0)}{x - x_0}$$

for x close to x_0 .

LINEARIZATION

MATH 122

FARMA

2.1: INSTAN
TANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

• Since we defined $f'(x_0)$ by a limit,

$$f'(x_0) \approx \frac{f(x) - f(x_0)}{x - x_0}$$

for x close to x_0 .

• Writing $\Delta x = x - x_0$ we can get a good linear approximation of f close to x_0 :

$$f(x) \approx f'(x)\Delta x + f(x_0)$$

called the Tangent Line Approximation.

LINEARIZATION

MATH 122

FARMAN

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

• Since we defined $f'(x_0)$ by a limit,

$$f'(x_0) \approx \frac{f(x) - f(x_0)}{x - x_0}$$

for x close to x_0 .

• Writing $\Delta x = x - x_0$ we can get a good linear approximation of f close to x_0 :

$$f(x) \approx f'(x)\Delta x + f(x_0)$$

called the Tangent Line Approximation.

• This means f locally looks like a line!

ANIMATION

MATH 122

FARMAN

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION

Non-Differentiable Function

MATH 122

FARMA

2.1: INSTAN
TANEOUS
RATE OF
CHANGE

2.2: The Derivative Function Consider the absolute value function

$$|x| = \begin{cases} x & \text{if } 0 \le x, \\ -x & \text{else} \end{cases}$$

at the point (0,0).

Non-Differentiable Function

MATH 122

FARMAN

2.1: INSTAN TANEOUS RATE OF CHANGE

2.2: The Derivative Function Consider the absolute value function

$$|x| = \begin{cases} x & \text{if } 0 \le x, \\ -x & \text{else} \end{cases}$$

at the point (0,0).

• For all x < 0,

$$\frac{|x|-0}{x-0} = \frac{-x}{x} = -1.$$

Non-Differentiable Function

MATH 122

FARMAN

2.1: INSTAN TANEOUS RATE OF CHANGE

2.2: The Derivative Function Consider the absolute value function

$$|x| = \begin{cases} x & \text{if } 0 \le x, \\ -x & \text{else} \end{cases}$$

at the point (0,0).

• For all x < 0,

$$\frac{|x| - 0}{x - 0} = \frac{-x}{x} = -1.$$

• For all 0 < x,

$$\frac{|x|-0}{x-0} = \frac{x}{x} = 1.$$

NON-DIFFERENTIABLE FUNCTION

MATH 122

FARMAN

2.1: INSTAN
TANEOUS
RATE OF
CHANGE

2.2: THE Derivative Function Consider the absolute value function

$$|x| = \begin{cases} x & \text{if } 0 \le x, \\ -x & \text{else} \end{cases}$$

at the point (0,0).

• For all x < 0,

$$\frac{|x| - 0}{x - 0} = \frac{-x}{x} = -1.$$

• For all 0 < x,

$$\frac{|x|-0}{x-0}=\frac{x}{x}=1.$$

• So the derivative at (0,0) is **not** defined: it's -1 if we approach from left to right, and 1 if right to left.

FARMA

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION What does the derivative tells us about the original function? On the interval (a, b), if for all $a \le x \le b$

FARMA

2.1: INSTANTANEOUS RATE OF CHANGE

2.2: THE DERIVATIVE FUNCTION What does the derivative tells us about the original function? On the interval (a, b), if for all $a \le x \le b$

• $f'(x) \le 0$, then f is decreasing on (a, b),

FARMA

2.1: INSTANTANEOUS
RATE OF
CHANGE

2.2: THE DERIVATIVE FUNCTION What does the derivative tells us about the original function? On the interval (a, b), if for all $a \le x \le b$

- $f'(x) \leq 0$, then f is decreasing on (a, b),
- $0 \le f'(x)$, then f is increasing on (a, b),

FARMA

2.1: INSTANTANEOUS RATE OF CHANGE

2.2: THE DERIVATIVE FUNCTION What does the derivative tells us about the original function? On the interval (a, b), if for all $a \le x \le b$

- $f'(x) \leq 0$, then f is decreasing on (a, b),
- $0 \le f'(x)$, then f is increasing on (a, b),
- f'(x) = 0, then f is constant on (a, b).