

МАТН 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: MARGINAL COST AND REVENUE

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE

Матн 122

Blake Farman¹

¹University of South Carolina, Columbia, SC USA

Calculus for Business Administration and Social Sciences

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

OUTLINE

Матн 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE

1 4.3: GLOBAL MAXIMA AND MINIMA

- * ロ > * 個 > * 注 > * 注 > - 注 - のへで

OUTLINE

Матн 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE

1 4.3: GLOBAL MAXIMA AND MINIMA

2 2.5: MARGINAL COST AND REVENUE

OUTLINE

Матн 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginal Cost and Revenue

4.4: PROFIT, COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE

4.3: GLOBAL MAXIMA AND MINIMA

2.5: MARGINAL COST AND REVENUE

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

3 4.4: Profit, Cost, and Revenue

- Maximizing Profit
- Maximizing Revenue

МАТН 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE

DEFINITION 1

For any function, *f*, we say

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

МАТН 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE

DEFINITION 1

For any function, f, we say

f has a *global minimum* at *p* if *f*(*p*) ≤ *f*(*x*) for all *x* in the domain of *f*.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginal Cost and Revenue

4.4: PROFIT, COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE

DEFINITION 1

For any function, *f*, we say

f has a *global minimum* at *p* if *f*(*p*) ≤ *f*(*x*) for all *x* in the domain of *f*.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

f has a *global maximum* at *p* if *f*(*x*) ≤ *f*(*p*) for all *x* in the domain of *f*.

МАТН 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT, COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE

DEFINITION 1

For any function, *f*, we say

- *f* has a *global minimum* at *p* if *f*(*p*) ≤ *f*(*x*) for all *x* in the domain of *f*.
- *f* has a *global maximum* at *p* if *f*(*x*) ≤ *f*(*p*) for all *x* in the domain of *f*.

THEOREM 1

If f is a continuous function defined on a closed interval, [a, b], then f has a global minimum and a global maximum on [a, b].

МАТН 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE Find the global extrema of $f(x) = x^3 - 9x^2 - 48x + 52$ on [-5, 14].

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

МАТН 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE Find the global extrema of $f(x) = x^3 - 9x^2 - 48x + 52$ on [-5, 14].

$$f'(x) = 3x^2 - 18x - 48$$

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE Find the global extrema of $f(x) = x^3 - 9x^2 - 48x + 52$ on [-5, 14].

$$f'(x) = 3x^2 - 18x - 48 = 3(x^2 - 6x - 16)$$

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE Find the global extrema of $f(x) = x^3 - 9x^2 - 48x + 52$ on [-5, 14].

$$f'(x) = 3x^2 - 18x - 48 = 3(x^2 - 6x - 16)$$

= 3(x + 2)(x - 8)

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE Find the global extrema of $f(x) = x^3 - 9x^2 - 48x + 52$ on [-5, 14].

$$f'(x) = 3x^2 - 18x - 48 = 3(x^2 - 6x - 16)$$

= 3(x+2)(x-8)
$$f''(x) = 6x - 18 = 6(x - 3)$$

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE Find the global extrema of $f(x) = x^3 - 9x^2 - 48x + 52$ on [-5, 14].

$$f'(x) = 3x^2 - 18x - 48 = 3(x^2 - 6x - 16)$$

= 3(x+2)(x-8)
$$f''(x) = 6x - 18 = 6(x - 3)$$

$$\Rightarrow f''(-2) = 6(-2 - 3) < 0$$

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: MARGINAL COST AND REVENUE

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE Find the global extrema of $f(x) = x^3 - 9x^2 - 48x + 52$ on [-5, 14].

$$f'(x) = 3x^2 - 18x - 48 = 3(x^2 - 6x - 16)$$

= 3(x + 2)(x - 8)
$$f''(x) = 6x - 18 = 6(x - 3)$$

$$\Rightarrow f''(-2) = 6(-2 - 3) < 0$$

$$\Rightarrow f''(8) = 6(8 - 3) > 0.$$

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE Find the global extrema of $f(x) = x^3 - 9x^2 - 48x + 52$ on [-5, 14].

$$f'(x) = 3x^2 - 18x - 48 = 3(x^2 - 6x - 16)$$

= 3(x + 2)(x - 8)
$$f''(x) = 6x - 18 = 6(x - 3)$$

$$\Rightarrow f''(-2) = 6(-2 - 3) < 0$$

$$\Rightarrow f''(8) = 6(8 - 3) > 0.$$

$$f(-5) = -58$$

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE Find the global extrema of $f(x) = x^3 - 9x^2 - 48x + 52$ on [-5, 14].

$$f'(x) = 3x^2 - 18x - 48 = 3(x^2 - 6x - 16)$$

= 3(x + 2)(x - 8)
$$f''(x) = 6x - 18 = 6(x - 3)$$

$$\Rightarrow f''(-2) = 6(-2 - 3) < 0$$

$$\Rightarrow f''(8) = 6(8 - 3) > 0.$$

$$f(-5) = -58$$

$$f(14) = 360$$

_

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE Find the global extrema of $f(x) = x^3 - 9x^2 - 48x + 52$ on [-5, 14].

$$f'(x) = 3x^{2} - 18x - 48 = 3(x^{2} - 6x - 16)$$

$$= 3(x + 2)(x - 8)$$

$$f''(x) = 6x - 18 = 6(x - 3)$$

$$\Rightarrow f''(-2) = 6(-2 - 3) < 0$$

$$\Rightarrow f''(8) = 6(8 - 3) > 0.$$

$$f(-5) = -58$$

$$f(14) = 360$$

$$f(-2) = 104$$

_

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE Find the global extrema of $f(x) = x^3 - 9x^2 - 48x + 52$ on [-5, 14].

$$f'(x) = 3x^{2} - 18x - 48 = 3(x^{2} - 6x - 16)$$

$$= 3(x + 2)(x - 8)$$

$$f''(x) = 6x - 18 = 6(x - 3)$$

$$\Rightarrow f''(-2) = 6(-2 - 3) < 0$$

$$\Rightarrow f''(8) = 6(8 - 3) > 0.$$

$$f(-5) = -58$$

$$f(14) = 360$$

$$f(-2) = 104$$

$$f(8) = -396.$$

_

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE Find the global extrema of $f(x) = x^3 - 9x^2 - 48x + 52$ on [-5, 14].

$$f'(x) = 3x^{2} - 18x - 48 = 3(x^{2} - 6x - 16)$$

$$= 3(x + 2)(x - 8)$$

$$f''(x) = 6x - 18 = 6(x - 3)$$

$$\Rightarrow f''(-2) = 6(-2 - 3) < 0$$

$$\Rightarrow f''(8) = 6(8 - 3) > 0.$$

$$f(-5) = -58$$

$$f(14) = 360$$

$$f(-2) = 104$$

$$f(8) = -396.$$

Maximum: (14,360).

_

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginal Cost and Revenue

4.4: PROFIZ COST, AND REVENUE MAXIMIZING

MAXIMIZING PROFIT MAXIMIZING REVENUE Find the global extrema of $f(x) = x^3 - 9x^2 - 48x + 52$ on [-5, 14].

$$f'(x) = 3x^2 - 18x - 48 = 3(x^2 - 6x - 16)$$

= 3(x + 2)(x - 8)
$$f''(x) = 6x - 18 = 6(x - 3)$$

> f''(-2) = 6(-2 - 3) < 0
$$\Rightarrow f''(8) = 6(8 - 3) > 0.$$

$$f(-5) = -58$$

$$f(14) = 360$$

$$f(-2) = 104$$

$$f(8) = -396.$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ < つ < ○</p>

Maximum: (14,360). Minimum: (8,-396).

DEFINITION

Матн 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE MAXIMIZING PROFIT

For a cost function, C(q), and a revenue function, R(q), define

▲ロト ▲ 同 ト ▲ 国 ト → 国 - の Q ()

DEFINITION

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE MAXIMIZING PROFIT

MAXIMIZING REVENUE For a cost function, C(q), and a revenue function, R(q), define

• the marginal cost is

$$rac{\mathsf{d}}{\mathsf{dq}}C(q)=C'(q),.$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

DEFINITION

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginal Cost and Revenue

4.4: PROFIT, COST, AND REVENUE MAXIMIZING PROFIT MAXIMIZING REVENUE For a cost function, C(q), and a revenue function, R(q), define

• the marginal cost is

$$rac{\mathsf{d}}{\mathsf{dq}}C(q)=C'(q),.$$

• the marginal revenue is

$$rac{\mathsf{d}}{\mathsf{dq}} R(q) = R'(q).$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

MARGINAL PROFIT

Матн 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE

MAXIMIZING Profit Maximizing

DEFINITION 2

The marginal profit is

$$\pi'(q) = R'(q) - C'(q)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

MARGINAL PROFIT

Матн 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT, Cost, and Revenue

MAXIMIZING PROFIT MAXIMIZING REVENUE

DEFINITION 2

The marginal profit is

$$\pi'(q) = R'(q) - C'(q).$$

REMARK 1

Critical points occur whenever marginal cost equal marginal revenue, or one of marginal cost/revenue is undefined.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

MATH 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: MARGINAL COST AND REVENUE

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE Find the quantity which maximizes profit for the given revenue and cost functions on [0, 1000]

 $\begin{array}{rcl} R(q) &=& 5q - 0.003q^2 \\ C(q) &=& 300 + 1.1q \end{array}$

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: MARGINAL COST AND REVENUE

4.4: PROFIT, COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE Find the quantity which maximizes profit for the given revenue and cost functions on [0, 1000]

 $\begin{array}{rcl} R(q) &=& 5q - 0.003q^2 \\ C(q) &=& 300 + 1.1q \end{array}$

Since

$$\pi(q) = -0.003q^2 + (5 - 1.1)q - 300$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

is a quadratic with negative leading coefficient, the global maximum occurs at

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: MARGINAL COST AND REVENUE

4.4: PROFIT, COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE Find the quantity which maximizes profit for the given revenue and cost functions on [0, 1000]

 $\begin{array}{rcl} R(q) &=& 5q - 0.003q^2 \\ C(q) &=& 300 + 1.1q \end{array}$

Since

$$\pi(q) = -0.003q^2 + (5 - 1.1)q - 300$$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

is a quadratic with negative leading coefficient, the global maximum occurs at

$$q = \frac{-(5 - 1.11)}{2(-0.003)}$$

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: MARGINAL COST AND REVENUE

4.4: PROFIT, COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE Find the quantity which maximizes profit for the given revenue and cost functions on [0, 1000]

 $\begin{array}{rcl} R(q) &=& 5q - 0.003q^2 \\ C(q) &=& 300 + 1.1q \end{array}$

Since

$$\pi(q) = -0.003q^2 + (5 - 1.1)q - 300$$

is a quadratic with negative leading coefficient, the global maximum occurs at

$$q = \frac{-(5 - 1.11)}{2(-0.003)} = 650$$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

МАТН 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT

MAXIMIZING REVENUE At a price of \$80 for a half day trip, a white water rafting company attracts 300 customers.

Матн 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE

Maximizing Profit Maximizing

REVENUE

At a price of \$80 for a half day trip, a white water rafting company attracts 300 customers. Every \$5 decrease in price attracts an additional 30 customers.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

МАТН 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT, Cost, and Revenue

MAXIMIZING PROFIT MAXIMIZING REVENUE At a price of \$80 for a half day trip, a white water rafting company attracts 300 customers. Every \$5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

Since each \$5 decrease in the price, p, increases the number of customers, q, by 30, we have

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

q(p)

MATH 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT, COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE At a price of \$80 for a half day trip, a white water rafting company attracts 300 customers. Every \$5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

Since each \$5 decrease in the price, p, increases the number of customers, q, by 30, we have

$$q(
ho) ~=~ 300 + rac{(80 -
ho)}{5} \cdot 30$$

MATH 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT, COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE At a price of \$80 for a half day trip, a white water rafting company attracts 300 customers. Every \$5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

Since each \$5 decrease in the price, p, increases the number of customers, q, by 30, we have

$$\begin{array}{rcl} q(\rho) & = & 300 + \frac{(80-\rho)}{5} \cdot 30 \\ & = & 300 + 6(80-\rho) \end{array}$$

MATH 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT, Cost, and Revenue

MAXIMIZING PROFIT MAXIMIZING REVENUE At a price of \$80 for a half day trip, a white water rafting company attracts 300 customers. Every \$5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

Since each \$5 decrease in the price, p, increases the number of customers, q, by 30, we have

$$q(p) = 300 + \frac{(80 - p)}{5} \cdot 30$$

= 300 + 6(80 - p)
= 300 + 480 - 6p

MATH 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT, Cost, and Revenue

MAXIMIZING PROFIT MAXIMIZING REVENUE At a price of \$80 for a half day trip, a white water rafting company attracts 300 customers. Every \$5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

Since each \$5 decrease in the price, p, increases the number of customers, q, by 30, we have

$$q(p) = 300 + \frac{(80 - p)}{5} \cdot 30$$

= 300 + 6(80 - p)
= 300 + 480 - 6p
= -6p + 780.

МАТН 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT, COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE At a price of \$80 for a half day trip, a white water rafting company attracts 300 customers. Every \$5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

The revenue is therefore

R(p) =

МАТН 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT, COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE At a price of \$80 for a half day trip, a white water rafting company attracts 300 customers. Every \$5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

The revenue is therefore

```
R(p) = p(-6p + 780)
```


МАТН 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT, Cost, and Revenue

MAXIMIZING PROFIT MAXIMIZING REVENUE At a price of \$80 for a half day trip, a white water rafting company attracts 300 customers. Every \$5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

The revenue is therefore

$$R(p) = p(-6p + 780) = -6p^2 + 780p.$$

МАТН 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT, COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE At a price of \$80 for a half day trip, a white water rafting company attracts 300 customers. Every \$5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

The revenue is therefore

$$R(p) = p(-6p + 780) = -6p^2 + 780p.$$

This is a downward facing parabola, so the maximum occurs at the vertex

MATH 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT, COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE At a price of \$80 for a half day trip, a white water rafting company attracts 300 customers. Every \$5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

The revenue is therefore

$$R(p) = p(-6p + 780) = -6p^2 + 780p.$$

This is a downward facing parabola, so the maximum occurs at the vertex -780

$$\frac{1}{2(-6)}$$

MATH 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE At a price of \$80 for a half day trip, a white water rafting company attracts 300 customers. Every \$5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

The revenue is therefore

$$R(p) = p(-6p + 780) = -6p^2 + 780p.$$

This is a downward facing parabola, so the maximum occurs at the vertex

$$\frac{-780}{2(-6)} = \frac{780}{12}$$

MATH 122

FARMAN

4.3: GLOBAL MAXIMA AND MINIMA

2.5: Marginal Cost and Revenue

4.4: PROFIT, COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE At a price of \$80 for a half day trip, a white water rafting company attracts 300 customers. Every \$5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

The revenue is therefore

$$R(p) = p(-6p + 780) = -6p^2 + 780p.$$

This is a downward facing parabola, so the maximum occurs at the vertex

$$\frac{-780}{2(-6)} = \frac{780}{12} = 65$$

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginai Cost and Revenue

4.4: PROFIT, COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE At a price of \$80 for a half day trip, a white water rafting company attracts 300 customers. Every \$5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

The maximum revenue is

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginai Cost and Revenue

4.4: PROFIT, COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE At a price of \$80 for a half day trip, a white water rafting company attracts 300 customers. Every \$5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

The maximum revenue is

R(65)

МАТН 122

FARMAN

4.3: GLOBAL Maxima and Minima

2.5: Marginai Cost and Revenue

4.4: PROFIT, COST, AND REVENUE

MAXIMIZING PROFIT MAXIMIZING REVENUE At a price of \$80 for a half day trip, a white water rafting company attracts 300 customers. Every \$5 decrease in price attracts an additional 30 customers. What price should the company charge per trip to maximize revenue?

The maximum revenue is

R(65) = \$25,350.