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THE CHAIN RULE

THEOREM 1
Let f and g be differentiable functions such that f ◦ g(x) is
well-defined.

The derivative of the composition is given by

(f ◦ g)′(x) =
(
f ′ ◦ g(x)

)
· g′(x).
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THE DERIVATIVE OF ARBITRARY

EXPONENTIALS

Let P(t) = P0at .

Let f (t) = P0et and let g(t) = ln(a)t so

(f ◦ g)(t)

= f (ln(a)t) = P0eln(a)t = P0(eln(a))t = P0at = P(t).

Hence

P ′(t) = f ′ ◦ g(t) · g′(t)
= P0eln(a)t · ln(a)
= P0at · ln(a)
= ln(a)P(t).
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EXAMPLE

Differentiate (x + 5)2.

First we identify this function as a composition. If we let
f (x) =

x2

and g(x) =

x + 5

, then f ◦ g(x) = (x + 5)2.
f ′(x) = 2x .
g′(x) =

d
dx (x + 5) = d

dx (x) +
d
dx (5) = 1 + 0 = 1.

f ′ ◦ g(x) =

f ′ (g(x)) = f ′(x + 5) = 2(x + 5) = 2x + 10.

Therefore by the Chain Rule

d

dx
(x + 5)2 =

d

dx
(f ◦ g(x)) =

(
f ′ ◦ g(x)

)
· g′(x)

= (2x + 10) · 1
= 2x + 10.
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Differentiate
(
ln
(
2t2 + 3

))2.

If we let f (t) =

t2

and g(t) =

ln
(
2t2 + 3

)

, then

f ◦ g(t) =
(
ln
(
2t2 + 3

))2
.

So we have:
g′(t) = 4t

2t2+3

f ′(t) = 2t
f ′ ◦ g(t) =

f ′(ln(2t2 + 3)) = 2ln(2t2 + 3)

d

dt

(
ln
(

2t2 + 3
))2

=
(
f ′ ◦ g(t)

)
· g′(t)

= 2ln(2t2 + 3) · 4t
2t2 + 3

=
8t ln(2t2 + 3)

2t2 + 3
.
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EXAMPLE

The amount of gas, G, in gallons, consumed by a car
depends on the distance, s, traveled in miles, which in
turn depends on the time traveled, t .

If the car consumes 0.05 gallons for each mile traveled
and the car is traveling 30 mph, then how fast is the gas
being consumed?

d

dt
(G ◦ s(t)) =

(
G′ ◦ s(t)

)
· s′(t)

= 0.05
gal
mile

· 30
miles
hour

= 1.5
gal

hour
.
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PRODUCT RULE

If f and g are differentiable functions, then

d

dx
(f (x)g(x)) = f ′(x)g(x) + f (x)g′(x).
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QUOTIENT RULE

Assume that f and g are differentiable functions and
f (x)/g(x) is well-defined.

Using the Product and Chain
Rules we can compute the derivative of the quotient:

d

dx

(
f (x)
g(x)

)
=

d

dx

(
f (x)g(x)−1

)
= f ′(x)g(x)−1 + f (x)

d

dx

(
g(x)−1

)
=

f ′(x)
g(x)

+ f (x)
(
(−1)g(x)−2g′(x)

)
=

f ′(x)
g(x)

− f (x)g′(x)
g(x)2

=
f ′(x)g(x)− f (x)g′(x)

g(x)2 .
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f ′(2)g(2)− f (2)g′(2)

g(2)2

=
5(3)− 1(6)

32

=
15 − 6

9
=

9
9
= 1.
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