

MATH 122

FARMAN

1.9: PROPOR-TIONALITY AND POWER FUNCTIONS

GRAPHS OF POWE FUNCTIONS QUADRATICS

MATH 122

Blake Farman 1

¹University of South Carolina, Columbia, SC USA

Calculus for Business Administration and Social Sciences

OUTLINE

MATH 122

FARMAN

1.9: PROPORTIONALITY AND POWER FUNCTIONS

GRAPHS OF POWE FUNCTIONS QUADRATICS

- **1**.9: Proportionality and Power Functions
 - Graphs of Power Functions
 - Quadratics

PROPORTIONALITY

MATH 122

FARMAN

1.9: PROPORTIONALITY AND POWER FUNCTIONS

FUNCTIONS

QUADRATICS

DEFINITION 1

We say that y is (directly) proportional to x if there is a non-zero constant k such that

$$y = kx$$
.

PROPORTIONALITY

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS

GRAPHS OF POWER FUNCTIONS QUADRATICS

DEFINITION 1

We say that *y* is *(directly) proportional* to *x* if there is a non-zero constant *k* such that

$$y = kx$$
.

The constant *k* is called the constant of proportionality.

PROPORTIONALITY

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS

GRAPHS OF POWER FUNCTIONS QUADRATICS

DEFINITION 1

We say that *y* is *(directly) proportional* to *x* if there is a non-zero constant *k* such that

$$y = kx$$
.

The constant *k* is called the constant of proportionality.

REMARK 1

This is a fancy way of saying the function y(x) = kx is a line through the origin.

MATH 122

FARMAN

1.9: PROPORTIONALITY AND POWER FUNCTIONS

GRAPHS OF POWE FUNCTIONS QUADRATICS The heart mass of a mammal is proportional to its mass.

(A) Write a function for the heart mass, *H*, in terms of body mass, *B*.

MATH 122

FARMAN

1.9: PROPOR-TIONALITY AND POWER FUNCTIONS

GRAPHS OF POWE FUNCTIONS QUADRATICS The heart mass of a mammal is proportional to its mass.

(A) Write a function for the heart mass, *H*, in terms of body mass, *B*.

$$H(B)=kB.$$

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS

GRAPHS OF POWER FUNCTIONS QUADRATICS The heart mass of a mammal is proportional to its mass.

(A) Write a function for the heart mass, *H*, in terms of body mass, *B*.

$$H(B)=kB.$$

(B) A human with a body mass of 70 kg has a heart mass of 0.42 kg. Find teh constant of proportionality.

MATH 122

FARMAN

1.9: PROPOR-TIONALITY AND POWER FUNCTIONS

GRAPHS OF POWER FUNCTIONS QUADRATICS The heart mass of a mammal is proportional to its mass.

(A) Write a function for the heart mass, *H*, in terms of body mass, *B*.

$$H(B)=kB.$$

(B) A human with a body mass of 70 kg has a heart mass of 0.42 kg. Find teh constant of proportionality.

$$\frac{42}{100} = 70k$$

MATH 122

FARMAN

1.9: PROPOR-TIONALITY AND POWER FUNCTIONS

GRAPHS OF POWER FUNCTIONS QUADRATICS The heart mass of a mammal is proportional to its mass.

(A) Write a function for the heart mass, *H*, in terms of body mass, *B*.

$$H(B) = kB$$
.

(B) A human with a body mass of 70 kg has a heart mass of 0.42 kg. Find teh constant of proportionality.

$$\frac{42}{100} = 70k$$

$$\Rightarrow k = \frac{42}{7000} \approx 0.006$$

MATH 122

FARMAN

1.9: PROPORTIONALITY AND POWER FUNCTIONS

GRAPHS OF POWER FUNCTIONS QUADRATICS The heart mass of a mammal is proportional to its mass.

(A) Write a function for the heart mass, *H*, in terms of body mass, *B*.

$$H(B) = kB$$
.

(B) A human with a body mass of 70 kg has a heart mass of 0.42 kg. Find teh constant of proportionality.

$$\frac{42}{100} = 70k$$

$$\Rightarrow k = \frac{42}{7000} \approx 0.006$$

(c) Estimate the heart mass of a horse with body mass of 650 kg.

EXAMPLE (CONT.)

MATH 122

FARMAN

1.9: PROPORTIONALITY AND POWER FUNCTIONS

GRAPHS OF POW FUNCTIONS

 $\textit{H}(650)\approx 0.006(650)$

EXAMPLE (CONT.)

MATH 122

FARMAN

1.9: PROPORTIONALITY AND POWER FUNCTIONS

GRAPHS OF POW FUNCTIONS OUADRATICS

$$H(650) \approx 0.006(650) = 3.9 \text{ kg}.$$

POWER FUNCTION

MATH 122

FARMAN

1.9: PROPOR-TIONALITY AND POWER FUNCTIONS

GRAPHS OF POWE FUNCTIONS QUADRATICS

DEFINITION 2

We say that Q(x) is a *power function* if

$$Q(x) = kx^p$$

for some fixed k, p.

POWER FUNCTION

MATH 122

FARMAN

1.9: PROPOR-TIONALITY AND POWER FUNCTIONS

GRAPHS OF POWER FUNCTIONS QUADRATICS

DEFINITION 2

We say that Q(x) is a *power function* if

$$Q(x) = kx^p$$

for some fixed k, p.

REMARK 2

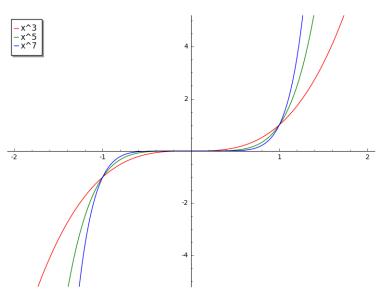
Generally, one calls this a *monomial* when $0 \le p$.

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER

GRAPHS OF POWER FUNCTIONS
QUADRATICS

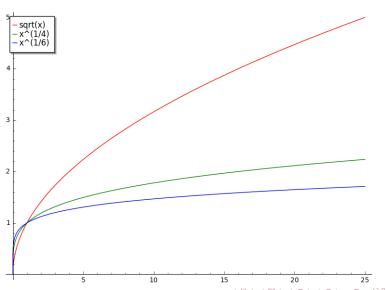

x^{2*n*+1}

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER

GRAPHS OF POWER FUNCTIONS

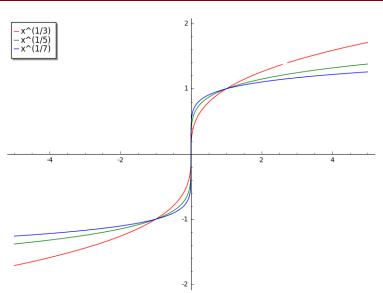


MATH 122

FARMAN

1.9: PROPOR-TIONALITY AND POWER FUNCTIONS

GRAPHS OF POWER FUNCTIONS
OUADRATICS



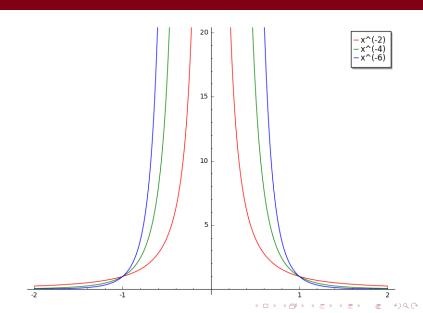
MATH 122

FARMAN

1.9: PROPOR-TIONALITY AND POWER FUNCTIONS

GRAPHS OF POWER FUNCTIONS

 χ^{-2n}

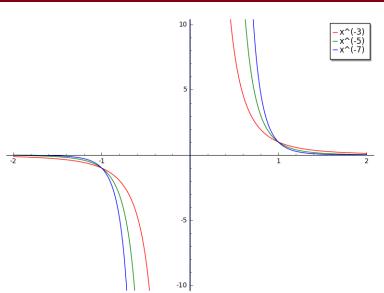

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER

FUNCTIONS

GRAPHS OF POWER FUNCTIONS



$X^{-(2n+1)}$

MATH 122

GRAPHS OF POWER FUNCTIONS

POLYNOMIALS

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS

GRAPHS OF POWER FUNCTIONS QUADRATICS

DEFINITION 3

Sums of power functions with non-negative integer exponents

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0, a_n \neq 0$$

are polynomials of degree n.

POLYNOMIALS

MATH 122

1.9: PROPOR-

DEFINITION 3

Sums of power functions with non-negative integer exponents

$$a_n x^n + a_{n-1} x^{n-1} + \cdots + a_1 x + a_0, a_n \neq 0$$

are polynomials of degree n.

REMARK 3

When the n = 2, one calls the polynomial a *quadratic*

VERTEX FORM

MATH 122

FARMAN

1.9: PROPORTIONALITY AND POWER FUNCTIONS

GRAPHS OF POWE FUNCTIONS QUADRATICS Any quadratic, $f(x) = ax^2 + bx + c$, can be written in vertex form

$$f(x) = a(x - h)^2 + k,$$

where (h, k) is the vertex of the parabola.

MATH 122

OUADRATICS

$$ax^2 + bx + c = a\left(x^2 + \frac{b}{a}x\right) + c$$

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER

GRAPHS OF POWE FUNCTIONS OUADRATICS

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$
$$= a\left(x^{2} + \frac{b}{a} + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c$$

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER

GRAPHS OF POWE FUNCTIONS QUADRATICS

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + \frac{b}{a} + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + \frac{4ac}{4a}$$

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS

GRAPHS OF POWER
FUNCTIONS
QUADRATICS

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + \frac{b}{a} + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + \frac{4ac}{4a}$$

$$= a\left(x - \frac{-b}{2a}\right)^{2} + \frac{4ac - b^{2}}{4a}$$

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS

GRAPHS OF POWI FUNCTIONS QUADRATICS

$$ax^{2} + bx + c = a\left(x^{2} + \frac{b}{a}x\right) + c$$

$$= a\left(x^{2} + \frac{b}{a} + \left(\frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + c$$

$$= a\left(\left(x + \frac{b}{2a}\right)^{2} - \left(\frac{b}{2a}\right)^{2}\right) + \frac{4ac}{4a}$$

$$= a\left(x - \frac{-b}{2a}\right)^{2} + \frac{4ac - b^{2}}{4a}$$

So
$$h = -b/2a$$
 and $k = f(h) = (4ac - b^2)/4a$.

THE QUADRATIC FORMULA

MATH 122

FARMA!

1.9: PROPORTIONALITY AND POWER FUNCTIONS

GRAPHS OF POWE FUNCTIONS QUADRATICS The solutions to the quadratic equation

$$ax^2 + bx + c = 0$$

are given by

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS

GRAPHS OF POWER FUNCTIONS QUADRATICS

$$ax^2 + bx + c = a(x - h)^2 + k.$$

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS

GRAPHS OF POWE FUNCTIONS QUADRATICS Put the quadratic in vertex form,

$$ax^2 + bx + c = a(x - h)^2 + k.$$

② Graph the parabola x^2 .

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS

GRAPHS OF POWE FUNCTIONS QUADRATICS

$$ax^2 + bx + c = a(x - h)^2 + k.$$

- ② Graph the parabola x^2 .
- Shift horizontally by h.

MATH 122

FARMAN

1.9: PROPORTIONALITY AND POWER FUNCTIONS

GRAPHS OF POWE FUNCTIONS QUADRATICS

$$ax^2 + bx + c = a(x - h)^2 + k.$$

- ② Graph the parabola x^2 .
- Shift horizontally by h.
- **3** Stretch vertically by |a| and reflect across the *x*-axis if a < 0.

MATH 122

1.9: PROPOR-

QUADRATICS

$$ax^2 + bx + c = a(x - h)^2 + k.$$

- ② Graph the parabola x^2 .
- Shift horizontally by h.
- Stretch vertically by |a| and reflect across the x-axis if a < 0.
- Translate vertically by k.

MATH 122

FARMAI

TIONALITY
AND POWER
FUNCTIONS
GRAPHS OF POW

GRAPHS OF POWE FUNCTIONS QUADRATICS A company finds that the average number of people attending a concert is 75 if the price is \$50.

EXAMPLE

MATH 122

FARMAN

1.9: PROPOR-

TIONALITY
AND POWER
FUNCTIONS
GRAPHS OF POWER
FUNCTIONS
QUADRATICS

- A company finds that the average number of people attending a concert is 75 if the price is \$50.
- At a price of \$35 per person, the average number of people attending is 120.

EXAMPLE

MATH 122

FARMA

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS
GRAPHS OF POWER
FUNCTIONS
QUADRATICS

- A company finds that the average number of people attending a concert is 75 if the price is \$50.
- At a price of \$35 per person, the average number of people attending is 120.

Determine the price that will generate the greatest revenue assuming the number of people attending a concert is a linear function of the price.

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS

GRAPHS OF POWE FUNCTIONS OUADRATICS

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS

GRAPHS OF POWER FUNCTIONS QUADRATICS

$$m=\frac{120-75}{35-50}$$

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS

GRAPHS OF POWER FUNCTIONS QUADRATICS

$$m = \frac{120 - 75}{35 - 50} = \frac{45}{-15}$$

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS

GRAPHS OF POWER FUNCTIONS QUADRATICS

$$m = \frac{120 - 75}{35 - 50} = \frac{45}{-15} = -3$$

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS
GRAPHS OF POWER
FUNCTIONS

OUADRATICS

Assuming the relationship is linear, the slope of the quantity function is

$$m = \frac{120 - 75}{35 - 50} = \frac{45}{-15} = -3$$

so the quantity of people attending a concert at price p is

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS
GRAPHS OF POWER
FUNCTIONS

OUADRATICS

Assuming the relationship is linear, the slope of the quantity function is

$$m = \frac{120 - 75}{35 - 50} = \frac{45}{-15} = -3$$

so the quantity of people attending a concert at price p is

$$q - 75 = -3(p - 50)$$

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS
GRAPHS OF POWER
FUNCTIONS

OUADRATICS

Assuming the relationship is linear, the slope of the quantity function is

$$m = \frac{120 - 75}{35 - 50} = \frac{45}{-15} = -3$$

so the quantity of people attending a concert at price p is

$$q - 75 = -3(p - 50) \Rightarrow q(p) = -3p + 225$$

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS
GRAPHS OF POWER
FUNCTIONS
OUADRATICS

Assuming the relationship is linear, the slope of the quantity function is

$$m = \frac{120 - 75}{35 - 50} = \frac{45}{-15} = -3$$

so the quantity of people attending a concert at price p is

$$q - 75 = -3(p - 50) \Rightarrow q(p) = -3p + 225$$

Hence the revenue is

$$R(p) = p \cdot q(p)$$

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS
GRAPHS OF POWER
FUNCTIONS

QUADRATICS

Assuming the relationship is linear, the slope of the quantity function is

$$m = \frac{120 - 75}{35 - 50} = \frac{45}{-15} = -3$$

so the quantity of people attending a concert at price p is

$$q - 75 = -3(p - 50) \Rightarrow q(p) = -3p + 225$$

Hence the revenue is

$$R(p) = p \cdot q(p) = p(-3p + 225)$$

MATH 122

FARMAN

1.9: PROPORTIONALITY AND POWER FUNCTIONS

GRAPHS OF POWER FUNCTIONS

QUADRATICS

Assuming the relationship is linear, the slope of the quantity function is

$$m = \frac{120 - 75}{35 - 50} = \frac{45}{-15} = -3$$

so the quantity of people attending a concert at price p is

$$q - 75 = -3(p - 50) \Rightarrow q(p) = -3p + 225$$

Hence the revenue is

$$R(p) = p \cdot q(p) = p(-3p + 225) = -3p^2 + 225p.$$

MATH 122

FARMAN

1.9: PROPOR TIONALITY AND POWER FUNCTIONS

GRAPHS OF PO FUNCTIONS OUADRATICS • The roots of R are p = 0 and p = 75.

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS

GRAPHS OF POW FUNCTIONS QUADRATICS

- The roots of R are p = 0 and p = 75.
- The x-coordinate of the vertex is

$$\frac{-225}{2(3)} = 37.5$$

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS
GRAPHS OF POWER

GRAPHS OF POW FUNCTIONS QUADRATICS

- The roots of R are p = 0 and p = 75.
- The x-coordinate of the vertex is

$$\frac{-225}{2(3)} = 37.5$$

The y-coordinate of the vertex is

MATH 122

FARMAN

1.9: PROPOR-TIONALITY AND POWER FUNCTIONS GRAPHS OF POWER FUNCTIONS

QUADRATICS

• The roots of R are p = 0 and p = 75.

• The x-coordinate of the vertex is

$$\frac{-225}{2(3)} = 37.5$$

The y-coordinate of the vertex is

$$R(37.5) = -3(37.5)(37.5 - 75)$$

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS
GRAPHS OF POWER

QUADRATICS

• The roots of R are p = 0 and p = 75.

• The x-coordinate of the vertex is

$$\frac{-225}{2(3)} = 37.5$$

The y-coordinate of the vertex is

$$R(37.5) = -3(37.5)(37.5 - 75)$$

= $-3(37.5)(-37.5)$

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS
GRAPHS OF POWER

GRAPHS OF POWE FUNCTIONS QUADRATICS

- The roots of R are p = 0 and p = 75.
- The x-coordinate of the vertex is

$$\frac{-225}{2(3)} = 37.5$$

• The *y*-coordinate of the vertex is

$$R(37.5) = -3(37.5)(37.5 - 75)$$
$$= -3(37.5)(-37.5)$$
$$= 3(37.5)^{2}$$

MATH 122

FARMAN

1.9: PROPORTIONALITY
AND POWER
FUNCTIONS
GRAPHS OF POWER
FUNCTIONS

QUADRATICS

- The roots of R are p = 0 and p = 75.
- The x-coordinate of the vertex is

$$\frac{-225}{2(3)} = 37.5$$

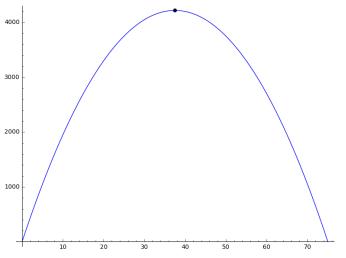
• The *y*-coordinate of the vertex is

$$R(37.5) = -3(37.5)(37.5 - 75)$$

$$= -3(37.5)(-37.5)$$

$$= 3(37.5)^{2}$$

$$= 4,218.75.$$



MATH 122

EADMAR

1.9: PROPOR TIONALITY AND POWER FUNCTIONS

GRAPHS OF POWE FUNCTIONS QUADRATICS It's clear from the graph that this is the maximum revenue:

