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DEFINITION

DEFINITION 1
The doubling time of an exponentially increasing
quantity is the time required for the quantity to double.

The half-life of an exponentially decaying quantity is the
time required for the quantity to be reduced by a factor
of one half.
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DOUBLING TIME

Every exponentially increasing function, P(t) = P0at , has a
fixed doubling time, d .

Take d = loga(2). Then

P(t + d) = P0at+d

= P0atad

= P0ataloga(2)

= 2P0at

= 2P(t).
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HALF-LIFE

Similarly, every exponentially decreasing function,
P(t) = P0at , has a fixed half-life, h.

Take

h = loga

(
1
2

)
= − loga(2).

Then

P(t + h) = P0at+h

= P0atah

= P0ata− loga(2)

=
1
2

P0at

=
1
2

P(t).
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COMPUTING DOUBLING TIME/HALF-LIFE

To approximate the value of the doubling time with a
calculator:

d = loga(2) =
ln(2)
ln(a)

and
h = − loga(2) = −

ln(2)
ln(a)

.
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EXAMPLE

Raditiation from an iodine source decays at a continuous
hourly rate of k = −0.004.

If the radiation level at a spill is
about 2.4 millirems/hour:
(A) What was the radiation level 24 hours later?
(B) How long will it take for the radiation levels to decay to

the maximum acceptable radiation level of 0.6
millirems/hour set by the EPA?
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EXAMPLE (CONT.)

(A) The radiation level 24 hours later is

R(24) = 2.4e−0.004·24 ≈ 2.18 millirems/hour.

(B) Solve the equation below for t :

0.6 = 2.4e−0.004t

⇒ e−0.004t =
2.4
0.6

=
1
4

⇒ −0.004t = ln

(
1
4

)
= − ln(4)

⇒ t =
1

0.004
ln(4) ≈ 346.57 hours.

Therefore, it will take approximately 346.57/24 = 14.4
days.
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The population of Kenya was about 19.5 million in 1984 and
39 million in 2009.

Find, assuming exponential growth, a
function of t years since 1984 modeling the population.
We are given P0 = 19.5 and P(25) = 39. If we assume that
P(t) = 19.5ekt , then

39 = 19.5e25k

⇒ 39
19.5

= 2 = e25k

⇒ ln(2) = ln(e25k ) = 25k

⇒ k =
ln(2)
25

≈ 0.028.

Therefore
P(t) ≈ 19.5e0.28t .
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The release of chlorofluorocarbons (CFCs) used in air
conditioners and household aerosols destroys the ozone
layer in the upper atmosphere.

The quantity of ozone, Q(t),
decays exponentially at a continuous rate of 0.25% per year.
What is the half-life of ozone?
The half life is given by

logek (2) = − ln(2)
ln(ek )

= − ln(2)
k

= − ln(2)
− 1

400
= 400 ln(2) ≈ 277 years.
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COMPOUND INTEREST

Assume a sum of money P0 is deposited in an account
paying interest at a rate of r yearly, compounded n times per
year.

This means that each compounding period, the
account earns interest on the balance at a rate of r/n.
What is the balance of the account after t years?
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COMPOUNDING INTEREST (CONT.)

Consider the table:

Compounding Period Account Balance

1 P0
(
1 + r

n

)
2 P0

(
1 + r

n

) (
1 + r

n

)
= P0

(
1 + r

n

)2

3 P0
(
1 + r

n

)2 (1 + r
n

)
= P0

(
1 + r

n

)3

...
...

n P0
(
1 + r

n

)n

So at the end of the year, the balance will be P0
(
1 + r

n

)n.
Continuing this way, the account balance after t years will be

P0

(
1 +

r
n

)nt
.
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DOUBLING TIME

Say you invest P0 dollars at a rate of r per year,
compounded n times.

What is the doubling time?
The function for the account balance is

P0

(
1 +

r
n

)nt
= P0

((
1 +

r
n

)n
)t

.

Therefore the doubling time is

d = log(1+ r
n )

n(2)

=
ln(2)

ln
((

1 + r
n

)n
) =

ln(2)
n ln

(
1 + r

n

) .
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EXAMPLE

Say the interest rate is 2% and interest is compounded
yearly.

The expected doubling time is

d =
ln(2)

ln(1.02)

≈ 35 years.

REMARK 1 (“RULE OF 70”)

When r% is very small,

ln
(

1 +
r

100

)
≈ r

100

and ln(2) ≈ .7, so the doubling rate is approximately

d =
ln(2)

ln
(
1 + r

100

) ≈ .7
r/100

=
70
r
.
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CONTINUOUSLY COMPOUNDING INTEREST

The method above is discrete.

If instead, we wish to
compound interest at every instant, we get continuously
compounding interest,

P(t) = P0ert .
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EXAMPLE

If $10,000 is invested at 5% per year, compounded
continuously, how long will it take to reach $15,000?

We want to solve the equation below for t :

P(t) = 10000et/20 = 15000

⇒ et/20 =
15000
10000

=
3
2

⇒ t/20 = ln(et/20) = ln

(
3
2

)
⇒ t = 20 ln

(
3
2

)
≈ 8 years.
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Say you invest P0 dollars at a rate of r% per year
compounding continuously.

The account balance is given by
the function

P0e
r

100 t = P0(e
r

100 )t .

Hence the doubling time is given by

log
e

r
100

(2) =
ln(2)

ln(e
r

100 )
=

ln(2)
r
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≈ 70
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