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e A function P(t) is exponential with base a if
P(t) = Poat.

e The value P, is the initial value, Py = P(0).

e When 1 < a, we say that P models exponential growth
and when 0 < a < 1, we say that P models exponential
decay.

e The base ais sometimes called the growth/decay
factor.
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Exponential functions have constant relative change.
Linear functions have constant rate of change.
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L.5: Expo- The body eliminates 40% of the drug ampicillan (an

NENTIAL

FUNCTIONS antibiotic) each hour. Given a dose of 250 mg, find a
function, Q(t), that models the quantity of the drug in the
body f hours after it has been administered.

e Q= Q(0) = 250,
e Q(1) = 250(6/10) = 250(3/5),
e Q(2) = [250(3/5)](3/5) = 250(3/5)2,

° b(t) — [250(3/5)!-1](3/5) = 250(3/5)".
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e LEH In 1995, there were 14 wolves reintroduced to Wyoming. By
FARMAN 2012 (17 years later), there were 207 wolves. Assuming the
1.5: Expo- growth of the population is exponential, find a function P(t)

rE— modeling the population size as a function of t years after
1995.

P(17) = P(0)-a'" =14a"" =207
207
14

171207
= — =~ 1.172
= a \/ 2

t

P(t) = 14 (2&7) "~ 14(1.172)"

= a7 =

Therefore,
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FARMAN Assume that Q(t) is an exponential function. Suppose that
1.5: EXPO- 0(20) = 882 and 0(23) = 91 4

e (A) Find the base.

91.4  Q(23) Qe

88.2 Q(20) Qa*°
/914
=3 = 885 = 1.012
(B) Find the relative growth rate.
rea-1=Y24 4 o012

88.2
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f=1(x) such that

fof '(x)=xand f'of(x)=x.
If any horizontal line intersects the graph of f(x) in at most
one point, then f(x) admits a composition inverse.
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First, we note that any exponential function visibly passes
the Horizontal Line Test.

The logarithm with base a is the inverse function of the
exponential function, &%, and is denoted by

log,(x). )
‘REMARK2

e By definition,

log,(&) = x and 8°%(*) = x.

e One denotes log,(x) by In(x).
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Solve 12 = 53 for t.

= et = 12

=Ine®) = 3t=In <5>

:>t‘—1lnE
3 5
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With the natural logarithm, we can rewrite any exponential
function with base e if we so choose. Say, P(t) = Pyal. We
let k = In(a) so e = aand hence

t
Poekt =P (ek> = Poat = P(t)

We call k the continuous growth/decay rate.
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Convert P(t) = 1000€%%% to the form Pyal.
Let a = €%9%. Then

P(t) = 10006 %" = 1000(%%)" = 10004".



EXAMPLE

MATH 122

FARMAN

Convert P(t) = 500(1.06)! to the form Pyek.



EXAMPLE

MATH 122

FARMAN

Convert P(t) = 500(1.06)! to the form Pyek.

P(t) = 500(1.06)! = 500&"(1:06)t,
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