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DEFINITION

DEFINITION 1
A function P(t) is exponential with base a if
P(t) = P0at .

The value P0 is the initial value, P0 = P(0).
When 1 < a, we say that P models exponential growth
and when 0 < a < 1, we say that P models exponential
decay.
The base a is sometimes called the growth/decay
factor.
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RELATIVE CHANGE

Let P(t) = P0at .

The relative change, r , of P is given by

r =
P(t + 1)− P(t)

P(t)

=
P0at+1 − P0at

P0at

=
P0at · a− P0at

P0at

=
P0at(a− 1)

P0at

= a− 1.

REMARK 1

Exponential functions have constant relative change.
Linear functions have constant rate of change.
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EXAMPLE

The body eliminates 40% of the drug ampicillan (an
antibiotic) each hour.

Given a dose of 250 mg, find a
function, Q(t), that models the quantity of the drug in the
body t hours after it has been administered.

Q0 = Q(0) = 250,
Q(1) = 250(6/10) = 250(3/5),
Q(2) = [250(3/5)](3/5) = 250(3/5)2,

...

Q(t) = [250(3/5)t−1](3/5) = 250(3/5)t .
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EXAMPLE

In 1995, there were 14 wolves reintroduced to Wyoming.

By
2012 (17 years later), there were 207 wolves. Assuming the
growth of the population is exponential, find a function P(t)
modeling the population size as a function of t years after
1995.

P(17) = P(0) · a17 = 14a17 = 207

⇒ a17 =
207
14

⇒ a =
17

√
207
14
≈ 1.172

Therefore,

P(t) = 14
(

207
14

) t
17

≈ 14(1.172)t .
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EXAMPLE

Assume that Q(t) is an exponential function.

Suppose that
Q(20) = 88.2 and Q(23) = 91.4.
(A) Find the base.

91.4
88.2

=
Q(23)
Q(20)

=
Q0a23

Q0a20 = a3

⇒ a =
3

√
91.4
88.2

≈ 1.012

(B) Find the relative growth rate.

r = a− 1 =
3

√
91.4
88.2

− 1 ≈ 0.012
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GRAPHS OF EXPONENTIAL FUNCTIONS

1 < a: 0 < a < 1:
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DEFINITION

DEFINITION 2
A function f (x) has an inverse if there exists a function
f−1(x) such that

f ◦ f−1(x) = x and f−1 ◦ f (x) = x .

THEOREM 1 (HORIZONTAL LINE TEST)

If any horizontal line intersects the graph of f (x) in at most
one point, then f (x) admits a composition inverse.
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DEFINITION

First, we note that any exponential function visibly passes
the Horizontal Line Test.

DEFINITION 3
The logarithm with base a is the inverse function of the
exponential function, ax , and is denoted by

loga(x).

REMARK 2

By definition,

loga(a
x) = x and aloga(x) = x .

One denotes loge(x) by ln(x).
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With the natural logarithm, we can rewrite any exponential
function with base e if we so choose.

Say, P(t) = P0at . We
let k = ln(a) so ek = a and hence

P0ekt = P0

(
ek
)t

= P0at = P(t)

We call k the continuous growth/decay rate.
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