

MATH 122

FARMAN

1.8: NEW FUNCTIONS FROM OLD

FUNCTION COMPOSITION SCALING

RIGID TRANSFORMATIONS

Матн 122

Blake Farman¹

¹University of South Carolina, Columbia, SC USA

Calculus for Business Administration and Social Sciences

OUTLINE

MATH 122

FARMAN

1.8: NEW Functions from Old

FUNCTION COMPOSITIO

SCALING

RIGID TRANSFORMATIONS

1.8: NEW FUNCTIONS FROM OLD

- Function Composition
- Scaling
- Rigid Transformations

FUNCTION COMPOSITION

DEFINITION 1

MATH 122

FARMAN

1.8: NEW FUNCTIONS FROM OLD

FUNCTION COMPOSITION

SCALING

RIGID TRANSFORMATIONS Given a function f and a function g such that the range of f is contained in the domain of g we can define the composition

$$g\circ f(x)=g(f(x)).$$

FUNCTION COMPOSITION

MATH 122

FARMAN

1.8: NEW Functions from Old

FUNCTION COMPOSITIO?

SCALING

RIGID TRANSFORMATIONS Given a function f and a function g such that the range of f is contained in the domain of g we can define the composition

$$g\circ f(x)=g(f(x)).$$

Remark 1

DEFINITION 1

We require that the range of f is contained in the domain of g so that the composition makes sense.

<ロト < 同ト < 目ト < 目 > < 日 > < 回 > < 0 < 0

FUNCTION COMPOSITION

MATH 122

FARMAN

1.8: NEW Functions from Old

FUNCTION COMPOSITION

SCALING

RIGID TRANSFORMATIONS Given a function f and a function g such that the range of f is contained in the domain of g we can define the composition

$$g\circ f(x)=g(f(x)).$$

Remark 1

DEFINITION 1

We require that the range of f is contained in the domain of g so that the composition makes sense. That is, we don't want f(x) to be a point for which g is undefined.

МАТН 122

FARMAN

1.8: NEW FUNCTIONS

FUNCTION COMPOSITION

SCALING

RIGID TRANSFORMATIONS

Let

•
$$f(x) = x + 1$$
, and

٠

МАТН 122

FARMAN

1.8: NEW Functions FROM OLD

FUNCTION COMPOSITION

SCALING

RIGID TRANSFORMATIONS

Let

•
$$f(x) = x + 1$$
, and

٠

•
$$g(x) = x^2$$
.

МАТН 122

FARMAN

1.8: NEW Functions FROM OLD

FUNCTION COMPOSITION

SCALING

RIGID TRANSFORMATION:

Let

•
$$f(x) = x + 1$$
, and

•
$$g(x) = x^2$$
.

Both have domain and range \mathbb{R} , so we can compose in either order.

МАТН 122

FARMAN

1.8: NEW Functions FROM OLD

FUNCTION COMPOSITION

SCALING

RIGID TRANSFORMATION

Let

•
$$f(x) = x + 1$$
, and

•
$$g(x) = x^2$$
.

Both have domain and range \mathbb{R} , so we can compose in either order.

 $g\circ f(x)=g\left(f\left(x\right)\right)$

МАТН 122

FARMAN

1.8: NEW Functions FROM OLD

FUNCTION COMPOSITION

SCALING

RIGID TRANSFORMATION:

Let

•
$$f(x) = x + 1$$
, and

•
$$g(x) = x^2$$
.

Both have domain and range \mathbb{R} , so we can compose in either order.

 $g \circ f(x) = g(f(x)) = g(x+1)$

МАТН 122

FARMAN

1.8: NEW Functions FROM OLD

FUNCTION COMPOSITION

SCALING

RIGID TRANSFORMATION:

Let

•
$$f(x) = x + 1$$
, and

•
$$g(x) = x^2$$
.

Both have domain and range \mathbb{R} , so we can compose in either order.

$$g \circ f(x) = g(f(x)) = g(x+1) = (x+1)^2$$

МАТН 122

FARMAN

1.8: NEW Functions FROM OLD

FUNCTION COMPOSITION

SCALING

RIGID TRANSFORMATION:

Let

•
$$f(x) = x + 1$$
, and

•
$$g(x) = x^2$$
.

Both have domain and range \mathbb{R} , so we can compose in either order.

$$g \circ f(x) = g(f(x)) = g(x+1) = (x+1)^2 = x^2 + 2x + 1.$$

МАТН 122

FARMAN

1.8: NEW Functions from Old

FUNCTION COMPOSITION

SCALING

RIGID TRANSFORMATION:

Let

•
$$f(x) = x + 1$$
, and

•
$$g(x) = x^2$$
.

Both have domain and range \mathbb{R} , so we can compose in either order.

$$g \circ f(x) = g(f(x)) = g(x+1) = (x+1)^2 = x^2 + 2x + 1.$$

and

$$f\circ g(x)=f\left(g\left(x\right)\right)$$

МАТН 122

FARMAN

1.8: NEW Functions FROM OLD

FUNCTION COMPOSITION

SCALING

RIGID TRANSFORMATION:

Let

•
$$f(x) = x + 1$$
, and

•
$$g(x) = x^2$$
.

Both have domain and range \mathbb{R} , so we can compose in either order.

$$g \circ f(x) = g(f(x)) = g(x+1) = (x+1)^2 = x^2 + 2x + 1.$$

and

$$f \circ g(x) = f(g(x)) = f(x^2)$$

МАТН 122

FARMAN

1.8: NEW Functions FROM OLD

FUNCTION COMPOSITION

SCALING

RIGID TRANSFORMATION:

Let

•
$$f(x) = x + 1$$
, and

•
$$g(x) = x^2$$
.

Both have domain and range \mathbb{R} , so we can compose in either order.

$$g \circ f(x) = g(f(x)) = g(x+1) = (x+1)^2 = x^2 + 2x + 1.$$

and

$$f \circ g(x) = f(g(x)) = f(x^2) = x^2 + 1.$$

Матн 122

FARMAN

1.8: NEW FUNCTIONS

FUNCTION COMPOSITION

SCALING

RIGID TRANSFORMATIONS Let

• $f(x) = \frac{1}{x}$, and

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Матн 122

FARMAN

1.8: NEW Functions from Old

FUNCTION COMPOSITION

SCALING

RIGID TRANSFORMATIONS Let

• $f(x) = \frac{1}{x}$, and • g(x) = x - 1.

٠

МАТН 122

FARMAN

1.8: NEW Functions FROM OLD

FUNCTION COMPOSITION

SCALING

RIGID TRANSFORMATIONS Let

• $f(x) = \frac{1}{x}$, and

• g(x) = x - 1.

The domain and range of g are both \mathbb{R} .

Матн 122

FARMAN

1.8: NEW FUNCTIONS

FUNCTION COMPOSITION

SCALING

RIGID TRANSFORMATIONS Let

•
$$f(x) = \frac{1}{x}$$
, and
• $g(x) = x - 1$

•
$$g(x) = x - 1$$
.

The domain and range of g are both \mathbb{R} . The domain and range of f are both

$$\{x\in\mathbb{R}\mid x\neq 0\}\,.$$

Матн 122

FARMAN

1.8: NEW Functions FROM OLD

FUNCTION COMPOSITIO

RIGID

Let

(

•
$$f(x) = \frac{1}{x}$$
, and

•
$$g(x) = x - 1$$
.

The domain and range of g are both \mathbb{R} . The domain and range of f are both

$$\{x\in\mathbb{R}\mid x\neq 0\}\,.$$

If we restrict g(x) to the domain

$$\{x \in \mathbb{R} \mid x \neq 1\}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

then $g(x) \neq 0$.

Матн 122

FARMAN

1.8: NEW Functions FROM OLD

FUNCTION COMPOSITIO

SCALING

RIGID TRANSFORMATIONS Let

•
$$f(x) = \frac{1}{x}$$
, and

•
$$g(x) = x - 1$$
.

The domain and range of g are both \mathbb{R} . The domain and range of f are both

$$\{x\in\mathbb{R}\mid x\neq 0\}\,.$$

If we restrict g(x) to the domain

$$\{x \in \mathbb{R} \mid x \neq 1\}$$

then $g(x) \neq 0$. Hence

$$f\circ g(x)=rac{1}{x-1}.$$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

MATH 122

FARMAN

1.8: NEW Functions from Old

FUNCTION COMPOSITIO

SCALING

RIGID TRANSFORMATIONS

Let f(x) be a function and let 0 < a be a real number.

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

MATH 122

FARMAN

1.8: NEW Functions from Old

FUNCTION COMPOSITIO?

SCALING

RIGID TRANSFORMATIONS

Let f(x) be a function and let 0 < a be a real number. The graph of af(x) is

Матн 122

FARMAN

1.8: NEW Functions from Old

FUNCTION COMPOSITIO

SCALING

RIGID TRANSFORMATIONS

Let f(x) be a function and let 0 < a be a real number. The graph of af(x) is

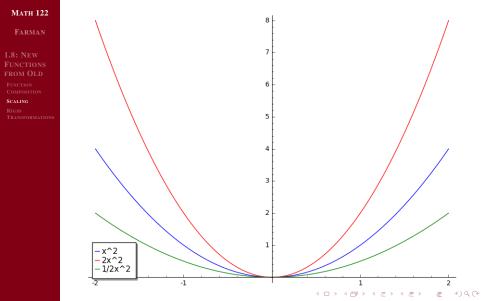
▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• a *vertical stretching* of the graph of f(x) if 1 < a

Матн 122

FARMAN

1.8: NEW Functions from Old


FUNCTION COMPOSITIO

SCALING

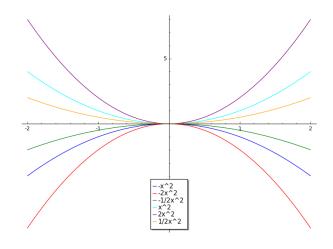
RIGID TRANSFORMATIONS Let f(x) be a function and let 0 < a be a real number. The graph of af(x) is

- a vertical stretching of the graph of f(x) if 1 < a
- a *vertical shrinking* of the graph of f(x) if a < 1.

REFLECTION

МАТН 122

FARMAN


1.8: NEW FUNCTIONS

FUNCTION COMPOSITIO

SCALING

RIGID TRANSFORMATIONS

The graph of -f(x) is a reflection of f(x) across the *x*-axis.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

МАТН 122

FARMAN

1.8: NEW Functions from Old

FUNCTION COMPOSITION

SCALING

RIGID TRANSFORMATIONS

Let f(x) be a function.

MATH 122

FARMAN

1.8: NEW Functions from Old

FUNCTION COMPOSITIO?

SCALING

RIGID TRANSFORMATIONS Let f(x) be a function. Let 0 < a be a real number.

MATH 122

FARMAN

1.8: NEW Functions from Old

FUNCTION COMPOSITION

SCALING

RIGID TRANSFORMATIONS Let f(x) be a function. Let 0 < a be a real number.

• The graph of f(x) + a is the graph of f(x) shifted up a units.

MATH 122

FARMAN

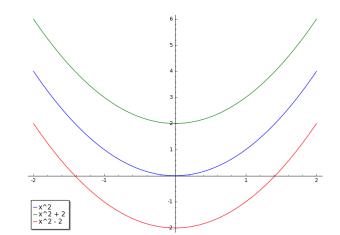
1.8: NEW Functions from Old

FUNCTION COMPOSITIO?

SCALING

RIGID TRANSFORMATIONS Let f(x) be a function. Let 0 < a be a real number.

- The graph of f(x) + a is the graph of f(x) shifted up a units.
- The graph of f(x) a is the graph of f(x) shifted down a units.


FARMAN

1.8: NEW Functions from Old

FUNCTION COMPOSITIO

SCALING

RIGID TRANSFORMATIONS

МАТН 122

FARMAN

1.8: NEW Functions from Old

FUNCTION COMPOSITION

SCALING

RIGID TRANSFORMATIONS

Let f(x) be a function.

MATH 122

FARMAN

1.8: NEW Functions from Old

FUNCTION COMPOSITIO?

SCALING

RIGID TRANSFORMATIONS

Let f(x) be a function. Let 0 < a be a real number.

MATH 122

FARMAN

1.8: NEW Functions from Old

FUNCTION COMPOSITION

SCALING

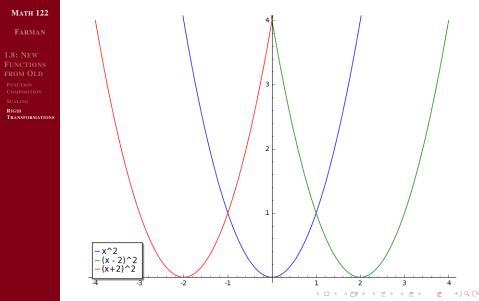
RIGID TRANSFORMATIONS Let f(x) be a function. Let 0 < a be a real number.

The graph of f(x – a) is a horizontal shift of f(x) by a units to the right.

МАТН 122

FARMAN

1.8: NEW Functions from Old


FUNCTION COMPOSITIO?

SCALING

RIGID TRANSFORMATIONS Let f(x) be a function. Let 0 < a be a real number.

- The graph of *f*(*x* − *a*) is a horizontal shift of *f*(*x*) by *a* units to the right.
- The graph of f(x + a) is a horizontal shift of f(x) by a units to the left.

