

Матн 122

FARMAN

1.1: FUNCTIONS GRAPHS 1.2: LINEAR FUNCTIONS

Матн 122

Blake Farman¹

¹University of South Carolina, Columbia, SC USA

Calculus for Business Administration and Social Sciences

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – のへで

OUTLINE

МАТН 122

FARMAN

1.1: FUNCTIONS Graphs

1.2: LINEAR Functions

1.1: FUNCTIONSGraphs

- イロト イ理ト イヨト イヨト ヨー のへぐ

OUTLINE

MATH 122

1 1.1: FUNCTIONS • Graphs

2 1.2: LINEAR FUNCTIONS

◆ロト ◆課 ト ◆注 ト ◆注 ト ・注 ・ のへで

МАТН 122

FARMAN

1.1: Functions

GRAPHS

1.2: LINEAR FUNCTIONS

DEFINITION 1

• A *function* is a rule that takes certain values as inputs and assigns to each input **exactly one** output.

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

МАТН 122

FARMAN

1.1: Functions

GRAPHS

1.2: LINEAR FUNCTIONS

DEFINITION 1

- A *function* is a rule that takes certain values as inputs and assigns to each input **exactly one** output.
- The set of all possible inputs is called the *domain* of the function.

<ロト < 同ト < 目ト < 目 > < 日 > < 回 > < 0 < 0

МАТН 122

FARMAN

1.1: Functions

GRAPHS

1.2: LINEAR FUNCTIONS

DEFINITION 1

- A *function* is a rule that takes certain values as inputs and assigns to each input **exactly one** output.
- The set of all possible inputs is called the *domain* of the function.
- The set of all possible outputs is called the *range* of the function.

<ロト < 同ト < 目ト < 目 > < 日 > < 回 > < 0 < 0

DEFINITION 1

МАТН 122

FARMAN

1.1: Functions

GRAPHS

1.2: LINEAR FUNCTIONS

- A *function* is a rule that takes certain values as inputs and assigns to each input **exactly one** output.
 - The set of all possible inputs is called the *domain* of the function.
 - The set of all possible outputs is called the *range* of the function.

Notation: A function named f that takes as input the *independent variable*, x, and outputs the *dependent variable*, y, is written as

$$y=f(x).$$

<ロト < 同ト < 目ト < 目 > < 日 > < 回 > < 0 < 0

Матн 122

FARMAN

1.1: Functions

GRAPHS

1.2: LINEAR FUNCTIONS

Given any two sets we can define a function.

МАТН 122

FARMAN

1.1: Functions

GRAPHS

1.2: LINEAR FUNCTIONS Given any two sets we can define a function. Say we have the sets

$$D = \{1, 2, 3, 4\}$$
 and $R = \{5, 6, 7, 8\}$.

МАТН 122

FARMAN

1.1: Functions

GRAPHS

1.2: LINEAR FUNCTIONS

Define

Given any two sets we can define a function. Say we have the sets

$$D = \{1, 2, 3, 4\}$$
 and $R = \{5, 6, 7, 8\}$.

МАТН 122

FARMAN

1.1: Functions

GRAPHS

1.2: LINEAR FUNCTIONS Given any two sets we can define a function. Say we have the sets

$$D = \{1, 2, 3, 4\}$$
 and $R = \{5, 6, 7, 8\}$.

Define

• f(1) = 6

• f(2) = 5

МАТН 122

FARMAN

1.1: Functions

GRAPHS

1.2: LINEAR FUNCTIONS Given any two sets we can define a function. Say we have the sets

$$D = \{1, 2, 3, 4\}$$
 and $R = \{5, 6, 7, 8\}$.

Define

• f(1) = 6

• f(3) = 8

МАТН 122

FARMAN

1.1: Functions

GRAPHS

1.2: LINEAR FUNCTIONS Given any two sets we can define a function. Say we have the sets

$$D = \{1, 2, 3, 4\}$$
 and $R = \{5, 6, 7, 8\}$.

Define

• f(1) = 6

• f(3) = 8

МАТН 122

FARMAN

1.1: Functions

GRAPHS

1.2: LINEAR FUNCTIONS Given any two sets we can define a function. Say we have the sets

$$D = \{1, 2, 3, 4\}$$
 and $R = \{5, 6, 7, 8\}$.

Define

• f(1) = 6

• f(3) = 8

МАТН 122

FARMAN

1.1: Functions

GRAPHS

1.2: LINEAR FUNCTIONS Given any two sets we can define a function. Say we have the sets

$$D = \{1, 2, 3, 4\}$$
 and $R = \{5, 6, 7, 8\}$.

Define

• f(1) = 6

• f(3) = 8

МАТН 122

FARMAN

1.1: Functions

GRAPHS

1.2: LINEAR FUNCTIONS Given any two sets we can define a function. Say we have the sets

$$D = \{1, 2, 3, 4\}$$
 and $R = \{5, 6, 7, 8\}$.

Define

• f(1) = 6

• f(3) = 8

МАТН 122

FARMAN

1.1: Functions

GRAPHS

1.2: LINEAR FUNCTIONS Given any two sets we can define a function. Say we have the sets

$$D = \{1, 2, 3, 4\}$$
 and $R = \{5, 6, 7, 8\}$.

Define

• f(1) = 6

• f(3) = 8

МАТН 122

FARMAN

1.1: FUNCTIONS

GRAPHS

1.2: LINEAR FUNCTIONS The function $f(x) = x^2$ is a function.

МАТН 122

FARMAN

1.1: Functions

GRAPHS

1.2: LINEAR FUNCTIONS The function $f(x) = x^2$ is a function.

• The domain of f is the set of all real numbers, \mathbb{R} .

МАТН 122

FARMAN

1.1: Functions

GRAPHS

1.2: LINEAR FUNCTIONS The function $f(x) = x^2$ is a function.

- The domain of f is the set of all real numbers, \mathbb{R} .
- The range of *f* is the set of all non-negative real numbers,

$$\{x\in\mathbb{R}\mid 0\leq x\}\,.$$

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

МАТН 122

FARMAN

1.1: FUNCTIONS

GRAPHS

1.2: LINEAR FUNCTIONS The following depicts a non-function.

МАТН 122

FARMAN

1.1: FUNCTIONS

GRAPHS

1.2: LINEAR FUNCTIONS

The following depicts a non-function.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 = のへで

МАТН 122

FARMAN

1.1: FUNCTIONS

GRAPHS

1.2: LINEAR FUNCTIONS

The following depicts a non-function.

МАТН 122

FARMAN

1.1: FUNCTIONS

GRAPHS

1.2: LINEAR FUNCTIONS

The following depicts a non-function.

МАТН 122

FARMAN

1.1: FUNCTIONS

GRAPHS

1.2: LINEAR FUNCTIONS

The following depicts a non-function.

МАТН 122

FARMAN

1.1: FUNCTIONS

GRAPHS

1.2: LINEAR FUNCTIONS

The following depicts a non-function.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 = のへで

МАТН 122

FARMAN

1.1: FUNCTIONS

GRAPHS

1.2: LINEAR FUNCTIONS

The following depicts a non-function.

MATH 122

FARMAN

1.1: Functions

GRAPHS

1.2: LINEAR FUNCTIONS

The following depicts a non-function.

The value f(1) is not well-defined because it requires a choice: it could be either 6 or 8.

CARTESIAN PLANE

Матн 122

FARMAN

1.1: Functions graphs

1.2: LINEAR FUNCTIONS Recall that the *Cartesian plane* is the set of all pairs

$$\mathbb{R}^2 = \{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

CARTESIAN PLANE

Матн 122

FARMAN

1.1: Functions graphs

1.2: LINEAR FUNCTIONS Recall that the *Cartesian plane* is the set of all pairs $\mathbb{R}^2 = \{(x, y) \mid x \in \mathbb{R}, y \in \mathbb{R}\}.$

It can be depicted as

GRAPH OF A FUNCTION

MATH 122

FARMAN

1.1: FUNCTIONS GRAPHS 1.2: LINEAF

DEFINITION 2

The graph of a real-valued function, f, with domain $D \subseteq \mathbb{R}$ is the set of pairs

$$\{(x, f(x)) \mid x \in D\} \subseteq \mathbb{R}^2.$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

It can be drawn on the Cartesian plane.

МАТН 122

FARMAN

1.1: Functions graphs 1.2: Linear

The function f(x) = x has

МАТН 122

FARMAN

1.1: Functions graphs 1.2: Linear The function f(x) = x has

• Domain all real numbers, \mathbb{R} ,

МАТН 122

FARMAN

1.1: Functions graphs

1.2: LINEAR FUNCTIONS The function f(x) = x has

- Domain all real numbers, \mathbb{R} ,
- Range all real numbers, \mathbb{R} ,

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

МАТН 122

FARMAN

1.1: Functions graphs 1.2: Line at

1.2: LINEAR Functions

The function f(x) = x has

- Domain all real numbers, \mathbb{R} ,
- Range all real numbers, \mathbb{R} ,

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Graph $\{(x, x) \mid x \in \mathbb{R}\},\$

МАТН 122

FARMAN

1.1: Functions graphs 1.2: Linear The function f(x) = x has

- Domain all real numbers, \mathbb{R} ,
- Range all real numbers, \mathbb{R} ,
- Graph $\{(x, x) \mid x \in \mathbb{R}\}$,

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

МАТН 122

FARMAN

1.1: Functions graphs 1.2: Linear Functions

DEFINITION 3

Let f be a function and let [a, b] be an interval contained in the domain of f. We say f is

▲□▶▲□▶▲□▶▲□▶ □ のQで

MATH 122

FARMAN

1.1: Functions graphs 1.2: Linear Functions

DEFINITION 3

Let f be a function and let [a, b] be an interval contained in the domain of f. We say f is

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - つへで

 increasing on [a,b] if f(x₁) < f(x₂) whenever a ≤ x₁ < x₂ ≤ b,

MATH 122

FARMAN

1.1: Functions graphs 1.2: Linear Functions

DEFINITION 3

Let f be a function and let [a, b] be an interval contained in the domain of f. We say f is

<ロト < 同ト < 目ト < 目 > < 日 > < 回 > < 0 < 0

- increasing on [a,b] if $f(x_1) < f(x_2)$ whenever $a \le x_1 < x_2 \le b$,
- decreasing on [a,b] if $f(x_2) < f(x_1)$ whenever $a \le x_1 < x_2 \le b$.

MATH 122

FARMAN

1.1: Functions graphs 1.2: Linear Functions

DEFINITION 3

Let f be a function and let [a, b] be an interval contained in the domain of f. We say f is

<ロト < 同ト < 目ト < 目 > < 日 > < 回 > < 0 < 0

- increasing on [a,b] if $f(x_1) < f(x_2)$ whenever $a \le x_1 < x_2 \le b$,
- decreasing on [a,b] if $f(x_2) < f(x_1)$ whenever $a \le x_1 < x_2 \le b$.

We say that f is increasing/decreasing if it is increasing/decreasing on its entire domain.

Матн 122

FARMAN

1.1: FUNCTIONS GRAPHS 1.2: LINEAL

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● □ ● ● ● ●

MATH 122

EXAMPLE

1.1: Functions Graphs 1.2: Linear

- Increasing on:
- Decreasing on:

MATH 122

EXAMPLE

1.1: Functions graphs 1.2: Linear

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Increasing on: $(0,\infty)$
- Decreasing on:

MATH 122

EXAMPLE

1.1: Functions graphs 1.2: Linear

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- Increasing on: $(0,\infty)$
- Decreasing on: $(-\infty, 0)$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ▶ ● □ ● ● ● ●

INTERCEPTS

M	ATH	12	2

FARMAN

1.1: Functions graphs

1.2: LINEAR FUNCTIONS

DEFINITION 4

Let *f* be a function of a real variable, *x*.

INTERCEPTS

MATH 122

FARMAN

1.1: Functions graphs

1.2: LINEAR FUNCTIONS

DEFINITION 4

Let *f* be a function of a real variable, *x*.

• The *x*-intercepts are the points (x, 0) on the graph.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

INTERCEPTS

MATH 122

FARMAN

1.1: Functions graphs

1.2: LINEAR FUNCTIONS

DEFINITION 4

Let f be a function of a real variable, x.

- The *x*-intercepts are the points (x, 0) on the graph.
- The *y*-intercept is the point (0, f(0)) on the graph.

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

МАТН 122

FARMAN

1.1: FUNCTIONS GRAPHS Let f(x) = x - 1.

Матн 122

FARMAN

1.1: Functions Graphs 1.2: Linear Let f(x) = x - 1. The *y*-intercept is

$$(0, f(0)) = (0, 0 - 1) = (0, -1).$$

Матн 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS Let f(x) = x - 1. The *y*-intercept is

$$(0, f(0)) = (0, 0 - 1) = (0, -1).$$

The x – *intercept* is (1,0):

$$f(1) = 1 - 1 = 0.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Матн 122

FARMAN

1.1: FUNCTIONS GRAPHS 1.2: LINEAR Let f(x) = x - 1. The *y*-intercept is

$$(0, f(0)) = (0, 0 - 1) = (0, -1).$$

The x – *intercept* is (1,0):

MATH 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS

DEFINITION 5

A function, *f*, is *linear* if there exist real numbers *m* and *b* such that

$$f(x)=mx+b.$$

MATH 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS

DEFINITION 5

A function, *f*, is *linear* if there exist real numbers *m* and *b* such that

$$f(x)=mx+b.$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Linear functions have domain and range $\mathbb{R},$

МАТН 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS

DEFINITION 5

A function, *f*, is *linear* if there exist real numbers *m* and *b* such that

$$f(x)=mx+b.$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

- Linear functions have domain and range $\mathbb{R},$
- The number *m* is called the *slope* of the *f*,

MATH 122

FARMAN

1.1: FUNCTIONS GRAPHS

FUNCTIONS

DEFINITION 5

A function, *f*, is *linear* if there exist real numbers *m* and *b* such that

$$f(x)=mx+b.$$

<ロト < 同ト < 目ト < 目 > < 日 > < 回 > < 0 < 0

- Linear functions have domain and range $\mathbb{R},$
- The number *m* is called the *slope* of the *f*,
- The number b is the y-intercept,

МАТН 122

FARMAN

1.1: FUNCTIONS GRAPHS

FUNCTIONS

DEFINITION 5

A function, *f*, is *linear* if there exist real numbers *m* and *b* such that

$$f(x)=mx+b.$$

- Linear functions have domain and range \mathbb{R} ,
- The number *m* is called the *slope* of the *f*,
- The number b is the y-intercept,
- This form is usually called the *Slope-Intercept Form* of a line.

Матн 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS The graph of f(x) = mx + b is always a line.

◆ロト ◆課 ト ◆注 ト ◆注 ト ・注 ・ のへで

Матн 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS The graph of f(x) = mx + b is always a line. They come in three flavors:

МАТН 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS The graph of f(x) = mx + b is always a line. They come in three flavors:

• Increasing (0 < *m*):

МАТН 122

FARMAN

1.1: FUNCTIONS Graphs

1.2: LINEAR FUNCTIONS The graph of f(x) = mx + b is always a line. They come in three flavors:

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

• Increasing (0 < *m*):

• Decreasing (*m* < 0):

МАТН 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS The graph of f(x) = mx + b is always a line. They come in three flavors:

<ロト < 同ト < 目ト < 目 > < 日 > < 回 > < 0 < 0

• Increasing (0 < *m*):

• Decreasing (*m* < 0):

• Horizontal (m = 0):

Матн 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS

DEFINITION 6

Given:

Матн 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS

DEFINITION 6

Given:

• a point, (x_0, y_0) ,

MATH 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS

DEFINITION 6

Given:

• a point, (x_0, y_0) ,

◆ロト ◆課 ト ◆注 ト ◆注 ト ・注 ・ のへで

• a slope, *m*,

MATH 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS

DEFINITION 6

Given:

- a point, (x_0, y_0) ,
- a slope, *m*,

the equation of the line through (x_0, y_0) with slope *m* is

$$y-y_0=m(x-x_0).$$

Two Points Determine a Line

MATH 122

FARMAN

1.1: FUNCTIONS GRAPHS 1.2: LINEAR

FUNCTIONS

Given two points, (x_0, y_0) and (x_1, y_1) , the slope of the line passing through them is

$$m = \frac{y_0 - y_1}{x_0 - x_1} = \frac{y_1 - y_0}{x_1 - x_0}.$$

Two Points Determine a Line

МАТН 122

FARMAN

1.1: FUNCTIONS GRAPHS 1.2: LINEAR

FUNCTIONS

Given two points, (x_0, y_0) and (x_1, y_1) , the slope of the line passing through them is

$$m = \frac{y_0 - y_1}{x_0 - x_1} = \frac{y_1 - y_0}{x_1 - x_0}$$

The line passing through these two points is

$$y - y_0 = m(x - x_0)$$
 or $y - y_1 = m(x - x_1)$.

Two Points Determine a Line

MATH 122

FARMAN

1.1: FUNCTIONS GRAPHS 1.2: LINEAR

FUNCTIONS

Given two points, (x_0, y_0) and (x_1, y_1) , the slope of the line passing through them is

$$m = \frac{y_0 - y_1}{x_0 - x_1} = \frac{y_1 - y_0}{x_1 - x_0}$$

The line passing through these two points is

$$y - y_0 = m(x - x_0)$$
 or $y - y_1 = m(x - x_1)$.

<ロト < 同ト < 目ト < 目 > < 日 > < 回 > < 0 < 0

To see these are the same line, put them both into Slope-Intercept Form.

Two Points Determine a Line (Cont.)

МАТН 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS

$$y = mx - \frac{y_0 - y_1}{x_0 - x_1}x_0 + y_0$$

$$y = mx - \frac{y_0 - y_1}{x_0 - x_1}x_1 + y_1$$

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Two Points Determine a Line (Cont.)

Матн 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS

$$y = mx - \frac{y_0 - y_1}{x_0 - x_1} x_0 + y_0$$

= $mx + \frac{(y_1 - y_0)x_0 + (x_0 - x_1)y_0}{x_0 - x_1}$

$$y = mx - \frac{y_0 - y_1}{x_0 - x_1} x_1 + y_1$$

= $mx + \frac{(y_1 - y_0)x_1 + (x_0 - x_1)y_1}{x_0 - x_1}$

▲ロト ▲御 ト ▲臣 ト ▲臣 ト → 臣 → の々ぐ

Two Points Determine a Line (Cont.)

Матн 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS

$$y = mx - \frac{y_0 - y_1}{x_0 - x_1} x_0 + y_0$$

= $mx + \frac{(y_1 - y_0)x_0 + (x_0 - x_1)y_0}{x_0 - x_1}$
= $mx - \frac{x_0y_1 - x_1y_0}{x_0 - x_1}$

$$y = mx - \frac{y_0 - y_1}{x_0 - x_1} x_1 + y_1$$

= $mx + \frac{(y_1 - y_0)x_1 + (x_0 - x_1)y_1}{x_0 - x_1}$
= $mx + \frac{x_0y_1 - x_1y_0}{x_0 - y_0}$

▲□▶▲圖▶▲厘▶▲厘▶ 厘 のへで

Матн 122

FARMAN

1.1: FUNCTIONS

1.2: LINEAR FUNCTIONS

DEFINITION 7

Let f be a function.

MATH 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS

DEFINITION 7

Let *f* be a function. Given x_0 , x_1 in the domain of *f*

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Матн 122

FARMAN

1.1: FUNCTION GRAPHS

1.2: LINEAR FUNCTIONS

DEFINITION 7

Let *f* be a function. Given x_0 , x_1 in the domain of *f*, the *difference quotient* is

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(x_0) - f(x_1)}{x_0 - x_1}$$

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

MATH 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR Functions

DEFINITION 7

Let *f* be a function. Given x_0 , x_1 in the domain of *f*, the *difference quotient* is

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(x_0) - f(x_1)}{x_0 - x_1}$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 - のへぐ

This is just the slope of the line through $(x_0, f(x_0))$ and $(x_1, f(x_1))$.

MATH 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS

DEFINITION 7

Let *f* be a function. Given x_0 , x_1 in the domain of *f*, the *difference quotient* is

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{f(x_0) - f(x_1)}{x_0 - x_1}$$

<ロト < 同ト < 目ト < 目 > < 日 > < 回 > < 0 < 0

This is just the slope of the line through $(x_0, f(x_0))$ and $(x_1, f(x_1))$. This line is usually called the *Secant Line*.

МАТН 122

FARMAN

◆ロト ◆課 ト ◆注 ト ◆注 ト ・注 ・ のへで

MATH 122

FARMAN

1.1: Functions Graphs

1.2: LINEAR FUNCTIONS Let f(x) = mx + b. Given x_0 and x_1 :

МАТН 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS

Let
$$f(x) = mx + b$$
. Given x_0 and x_1 :

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{mx_1 + b - (mx_0 + b)}{x_1 - x_0}$$

МАТН 122

FARMAN

Let

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS

$$f(x) = mx + b. \text{ Given } x_0 \text{ and } x_1:$$

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{mx_1 + b - (mx_0 + b)}{x_1 - x_0}$$

$$= \frac{mx_1 - mx_0 + b - b}{x_1 - x_0}$$

◆ロト ◆課 ト ◆注 ト ◆注 ト ・注 ・ のへで

МАТН 122

FARMAN

Let f

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS

$$(x) = mx + b. \text{ Given } x_0 \text{ and } x_1:$$

$$\frac{f(x_1) - f(x_0)}{x_1 - x_0} = \frac{mx_1 + b - (mx_0 + b)}{x_1 - x_0}$$

$$= \frac{mx_1 - mx_0 + b - b}{x_1 - x_0}$$

$$= \frac{m(x_1 - x_0)}{x_1 - x_0}$$

◆ロト ◆課 ト ◆注 ト ◆注 ト ・注 ・ のへで

МАТН 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS

Let $f(x) = mx + b$. Given x_0 and x_1 :		
$\frac{f(x_1) - f(x_0)}{x_1 - x_2}$	=	$\frac{mx_1+b-(mx_0+b)}{x_1-x_2}$
A1 A0	=	$\frac{mx_1 - mx_0 + b - b}{x_1 - x_0}$
	=	$\frac{m(x_1 - x_0)}{x_1 - x_0}$
	=	m

◆ロト ◆課 ト ◆注 ト ◆注 ト ・注 ・ のへで

МАТН 122

FARMAN

1.1: FUNCTIONS Graphs

1.2: LINEAR FUNCTIONS

Let $f(x) = mx + b$. Given x_0 and x_1 :			
$\underline{f(x_1)-f(x_0)}$	=	$\underline{mx_1 + b - (mx_0 + b)}$	
$x_1 - x_0$		$x_1 - x_0$	
	_	$\underline{mx_1 - mx_0 + b - b}$	
		$x_1 - x_0$	
	=	$m(x_1 - x_0)$	
		$x_1 - x_0$	
	=	т	

Hence for a linear function, the difference quotient is just the slope.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

МАТН 122

FARMAN

Let
$$f(x) = x^2$$
. For $x_0 = -1$, $x_1 = 2$:

1.1: FUNCTIONS GRAPHS

MATH 122

FARMAN

1.1: FUNCTIONS GRAPHS

Let $f(x) = x^2$. For $x_0 = -1$, $x_1 = 2$:

$$\frac{f(-1)-f(2)}{-1-2}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Матн 122

FARMAN

1.1: FUNCTIONS GRAPHS

Let
$$f(x) = x^2$$
. For $x_0 = -1$, $x_1 = 2$:

$$\frac{f(-1)-f(2)}{-1-2}=\frac{(-1)^2-2^2}{-3}$$

Матн 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS

Let
$$f(x) = x^2$$
. For $x_0 = -1$, $x_1 = 2$:

$$\frac{f(-1) - f(2)}{-1 - 2} = \frac{(-1)^2 - 2^2}{-3} = \frac{1 - 4}{-3}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

0

Матн 122

FARMAN

1.1: FUNCTIONS GRAPHS

1.2: LINEAR FUNCTIONS

Let
$$f(x) = x^2$$
. For $x_0 = -1$, $x_1 = 2$:
$$\frac{f(-1) - f(2)}{-1 - 2} = \frac{(-1)^2 - 2^2}{-3} = \frac{1 - 4}{-3} = \frac{-3}{-3} = 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

MATH 122

FARMAN

1.1: Functions Graphs

1.2: LINEAR FUNCTIONS

Let
$$f(x) = x^2$$
. For $x_0 = -1$, $x_1 = 2$:

$$\frac{f(-1)-f(2)}{-1-2} = \frac{(-1)^2 - 2^2}{-3} = \frac{1-4}{-3} = \frac{-3}{-3} = 1.$$

This is the slope of the secant line:

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – のへぐ

МАТН 122

FARMAN

For
$$x_0 = 0$$
, $x_1 = 2$:

1.1: FUNCTIONS GRAPHS

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

МАТН 122

FARMAN

For
$$x_0 = 0$$
, $x_1 = 2$:

1.1: FUNCTIONS Graphs

$$\frac{f(0)-f(2)}{0-2}$$

МАТН 122

FARMAN

For
$$x_0 = 0$$
, $x_1 = 2$:

$$\frac{f(0)-f(2)}{0-2}=\frac{0-4}{-2}$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

МАТН 122

FARMAN

For
$$x_0 = 0$$
, $x_1 = 2$:

$$\frac{f(0)-f(2)}{0-2}=\frac{0-4}{-2}=\frac{4}{2}=2.$$

<□ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Матн 122

FARMAN

For
$$x_0 = 0$$
, $x_1 = 2$:

$$\frac{f(0)-f(2)}{0-2}=\frac{0-4}{-2}=\frac{4}{2}=2.$$

1.2: LINEAR FUNCTIONS

This is the slope of the secant line:

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ ―臣 – のへぐ